

Zonnon Language Report

Jürg Gutknecht

Editors: Brian Kirk and David Lightfoot

July 2009

DRAFT

Zonnon Language Report: Release v04 r00 b00 Saved on 28 July 2009

Abstract
Zonnon is a general-purpose programming language in the Pascal, Modula-2 and Oberon family. It
retains an emphasis on simplicity, clear syntax and separation of concerns whilst focusing on
concurrency and ease of composition and expression. Unification of abstractions is at the heart of its
design and this is reflected in its conceptual model based on modules, objects, definitions and
implementations. Zonnon offers a new computing model based on active objects with their interaction
defined by syntax controlled dialogs. It also introduces new features including operator overloading,
indexers and exception handling, and is specifically designed to be platform independent.

Document Details
Title: Zonnon Language Report
Version: 04
Revision: 00
Issued: 28 July 2009

Language Designer: Prof. Jürg Gutknecht
Language Implementers: Eugene Zueff, Roman Mitin, Nina Gonova
Report Editors: Brian Kirk and David Lightfoot

Copyright © 2003-2009 ETH Zurich. All rights reserved.
This document may be copied without charge for academic purposes provided that no changes are
made to the content, including this notice.

Published by:

Institute of Computer Systems
ETH Zentrum, RZ H 24
CH-8092 Zürich
Switzerland

The latest version of this report is available on-line at www.zonnon.ethz.ch
Please send details of any errors and omissions in this document to zonnon@inf.ethz.ch

Any product and company names mentioned in this document may be the trademarks of their
respective owners.

The contents of examples used in this document are fictitious and no association with any real
company, organization, product, service, domain name, e-mail address, logo, place or event is intended
or should be inferred.

The typographic conventions used in the report are:

New concepts are indicated in italics
Programming language keywords in the text are in italics.
Main headings are in 12-point Arial
Subheadings are in 11-point Arial
Sub-subheadings are in 10-point Arial
Sub-sub-subheadings are in 9-point Arial
Main text is in 10-point Times New Roman
Syntax is in 8-point Verdana
References appear in square brackets e.g. [Compiler]
In general spelling is in ‘US English’

http://www.zonnon.ethz.ch/�
mailto:zonnonreport@inf.ethz.ch�

Zonnon Language Report: Release v04 r00 b00 Saved on 28 July 2009

Contents
1 Introduction .. 1
2 Program Composition ... 1
3 Syntax Notation .. 3

3.1 Definition of Extended Backus-Naur Formalism ... 3
3.2 EBNF defined in EBNF .. 3
3.3 Description of EBNF .. 3

4 Language Symbols and Identifiers ... 4
4.1 Vocabulary and Representation .. 4
4.2 Identifiers .. 4
4.3 Modifiers and Specifiers ... 4
4.4 Numeric Constants ... 5
4.5 Character Constants .. 5
4.6 String Constants .. 5
4.7 Reserved Words, Delimiters and Operators .. 6
4.8 Comments ... 6

5 Declarations .. 6
5.1 Identifier Declarations and Scope Rules ... 7
5.2 Constant Declarations ... 7
5.3 Type Declarations ... 7
5.4 Variable declarations .. 14

6 Expressions ... 14
6.1 Operands and Designators .. 14
6.2 Predefined Operators .. 15
6.3 User-Defined Operators and Operator Declarations ... 17
6.4 Operator Precedence ... 19
6.5 Numeric resolution within expressions ... 19

7 Statements... 19
7.1 The Assignment Statement ... 20
7.2 The Procedure Call ... 22
7.3 The if Statement .. 22
7.4 The case Statement ... 22
7.5 The while Statement ... 23
7.6 The repeat Statement .. 23
7.7 The for Statement ... 24
7.8 The loop Statement ... 24
7.9 The return Statement .. 24
7.10 The Block Statement .. 25
7.11 The await Statement ... 26
7.12 Protocol Send, Receive, SendReceive, Accept and Return Statements 26
7.13 Activity Launch Statement ... 26

8 Procedure and Method Declarations and Formal Parameters ... 26
8.1 Procedure Modifiers ... 27

9 Concurrency, Activities and Protocols ... 28
9.1 Activities, Active Objects and Active Modules .. 28
9.2 Protocol Controlled Activities .. 30
9.3 Barrier Controlled Activities .. 32
9.4 Protected Objects and Modules .. 33

10 Mathematical extensions .. 33
10.1 Data structures .. 33
10.2 Indices... 34
10.3 Operators .. 36
10.4 Additional functions ... 38

11 Program Units ... 38
11.1 The Module .. 39
11.2 The Object .. 40
11.3 The Definition .. 41

Zonnon Language Report: Release v04 r00 b00 Saved on 28 July 2009

11.4 The Implementation .. 42
12 Reflection ... 43

12.1 XML Schema .. 43
12.2 Example: program reflection and information .. 43

13 Definition of Terminology .. 44
13.1 Numeric Types ... 44
13.2 Same Types .. 44
13.3 Equal Types .. 44
13.4 Assignment Compatible.. 45
13.5 Array Compatible ... 45
13.6 Compatible for Expressions and Operator Overloading ... 45
13.7 Matching Formal Parameter Lists... 45

14 Predefined Procedures .. 46
15 Input and Output Procedures .. 46

15.1 Parameters and special syntax .. 47
15.2 Input Procedures ... 47
15.3 Output Procedures .. 47

16 Example Module Strings .. 48
16.1 Zonnon Strings definition ... 48
16.2 Zonnon Strings implementation by native Zonnon character arrays 49

17 Example of Protocol Controlled Activities and Dialog .. 52
18 Syntax ... 54
19 References .. 58

Zonnon Language Report: Release v04 r00 b00 Saved on 28 July 2009 1

Zonnon Language Report
With a new computer language one not only learns a new vocabulary and grammar
but opens oneself to a new world of thought …

– Niklaus Wirth

1 Introduction
Zonnon is a new programming language in the Pascal, Modula-2 and Oberon family. It retains an
emphasis on simplicity, clear syntax and separation of concerns. Although more compact than
languages such as C#, Java and Ada, it is a general-purpose language suited to a wide range of
applications. Typically this includes component-oriented composition, concurrent systems, algorithms
and data structures, object-oriented and structured programming, graphics, mathematical programming
and low-level systems programming. Zonnon provides a rich object model with encapsulated behavior
and syntax controlled dialogs which encapsulate state. It may be used to write programs in procedural,
object-oriented and concurrent styles [see Zonnon]. Zonnon is also well suited for teaching purposes,
from basic principles right through to advanced concepts.

Unification of abstractions is at the heart of Zonnon’s design. This is reflected in its four pillars

• the module—both a textual container and program composition object

• the object—a type template for defining objects

• the definition—a concept of abstraction and composition for defining interfaces

• the implementation—a container for reusable fragments of object implementations

These entities provide the basis for program composition in the large and also for textual partitioning
and separate compilation during program development—they are ‘first-class citizens’ in the language.

The object model in Zonnon is based on the notion that ‘everything is an object’. It supports three
views of them, firstly as entities with an intrinsic type, used by abstract operators in a type-safe way,
secondly as providers of services accessed via defined interfaces and thirdly as autonomous agents
interoperating via formal dialogs. Activities are used both for adding behavior to objects and for
implementing dialogs. They integrate concurrency seamlessly into the language.

Many of the concepts in Zonnon have been drawn from its heritage. The intention has been to offer
expressive and cohesive features which have proved their worth. Zonnon also introduces some new
features such as operator overloading for representing mathematical and other expressions in a natural
way and exception handling for improving reliability. Some features have been reintroduced from
earlier members of the Pascal language family, for example the definition, implementation pairs and
enumeration types from Modula-2 and, for pragmatic reasons, the read and write statements from
Pascal.

When choosing a language for building modern systems achieving interoperability between
programs written in different languages within the same system is an important consideration. The
Zonnon language is specifically designed to be platform-independent whilst supporting
interoperability.

A companion document, Zonnon Programmers’ Manual, contains implementation specific details
for a particular compiler and runtime support package for a computing platform, see [Compiler].

2 Program Composition
Zonnon programs are composed from four constructs: module, object, definition and implementation.
More precisely:

A module has a dual nature: it declares a syntactic container for logically cohesive program
declarations and it simultaneously declares an object whose lifecycle is controlled by the system. So
the module provides the mechanism for the textual partitioning of a source program and also the
dynamic loading at execution time of a part of a program, in the form of an instantiated object.

Any number of dynamically created objects may have their lifecycles managed by a program, however
only a single instance of each module’s object may be instantiated by the system at any given time.
Because the module forms a unit of encapsulation and data hiding, it is also ideal as a container for
implementing abstract data types.

Zonnon Language Report: Release v04 r00 b00 Saved on 28 July 2009 2

An object is a type template comprising fields, methods and activities. The fields represent the object’s
state, the methods its functionality and the activities its concurrent activities. It can expose its interface
to its system environment in two ways. Firstly by its intrinsic interface, that is, the set of all the
elements which the programmer chooses to make public rather than keep private, and secondly by a
number of definitions, each of which exposes a distinct facet representing an aspect of the object’s
services to its clients.

A definition defines a distinct facet of an object in terms of an abstract interface comprising field
declarations and method signatures. Definitions can form a network of related types, not just a
hierarchy.

An implementation defines an aggregate of field and method implementations intended for re-use when
incorporated into a program via one or more object templates. An object implementing a definition is
required to implement all of its fields and methods. However, if an object imports an implementation of
a definition with the same name as the definition then this is implicitly presumed to be its (possibly
partial) implementation.

A program text comprises modules, objects, definitions and implementations. The program’s intrinsic
interface is the set of declarations made public by all of its parts. A run-time program comprises one or
more modules and any objects that are created dynamically. The system provides mechanisms for
dynamic program loading and unloading of modules and dynamic management of object resources at
execution time, when a program runs.

These constructs are used to form the overall structure of a program as module, object, definition and
implementation program units. Each construct may exist as a separately compiled unit or may be
textually embedded within certain of the other constructs. A number of relations hold between these
constructs which define how they may be used together; they are as follows, where x and y each
represent a construct:

x contains y
Construct x may have one or more of construct y textually nested within it.

x imports y
Construct x may import declarations from one or more construct y.

x aggregates from y
Construct x may import implementation fragments from a construct y.

x implements y
If the names of a definition and an implementation are identical then the implementation provides at
least part of the implementation of the definition, or it may provide implementations for one or
more definitions.

x refines y
definition x refines definition y, omitting, adding to, or modifying its services.

The rules for valid use of the constructs (program units) are illustrated in Figure 1. They are:

A module unit can have definition, implementation and object constructs textually nested in it

module, definition, implementation and object units can import declarations from other module,
definition and object units

module, implementation and object units can aggregate from other implementation units

module, implementation and object units can implement definition constructs

definition constructs can refine other definition constructs

Zonnon Language Report: Release v04 r00 b00 Saved on 28 July 2009 3

x/y D I O M x/y D I O M x/y D I O M
D D + + + D
I I + + + I +
O O + + + O +
M + + + M + + + M +

x contains y x imports y x aggregates from y

x/y D I O M x/y D I O M Key:
D D + D= definition
I + I I = implementation
O + O O= object
M + M M= module

x implements y x refines y += Relation is valid

Figure 1 Valid relations between Constructs (Program Units)

3 Syntax Notation
The syntax of the language is defined in an Extended Backus-Naur Formalism (EBNF). The complete
syntax of Zonnon is defined in section 17. Relevant fragments of the syntax are also provided in the
text as each feature of the language is defined.

3.1 Definition of Extended Backus-Naur Formalism
The EBNF notation used in this report has the following features:

• Alternatives are separated by |.
• Brackets [and] denote that the enclosed expression is optional.
• Braces { and } denote its repetition (possibly 0 times).
• Parentheses (and) are used to form groups of items.
• Non-terminal symbols start with an upper-case letter (e.g. Statement).
• Terminal symbols either start with a lower-case letter (e.g. letter), or are written in bold letters

(e.g. begin), or are denoted by strings (e.g. ":=").
• Comments start with // and continue to the end of the line.

3.2 EBNF defined in EBNF
It is possible to define the EBNF syntax using EBNF as an example

Syntax = {Production}.
Production= NonTerminalSymbol "=" Expression ".".
Expression= Term {"|" Term}.
Term = Factor {Factor}.
Factor = terminalSymbol | NonTerminalSymbol |
 "(" Expression ")" | "[" Expression "]" | "{" Expression "}" .

3.3 Description of EBNF
The EBNF constructs are described below:

3.3.1 Sequence
A = BC.

An A consists of a B followed by a C

Examples:
Sentence = Subject Predicate.
FileName = Name '.' Extension.
Name = FirstName Surname.

3.3.2 Repetition
A = {B}.

An A consists of zero or more B's.

Zonnon Language Report: Release v04 r00 b00 Saved on 28 July 2009 4

Examples:
File = {Record}.
Bill = {Item Price}.

3.3.3 Selection
A = B | C.

An A consists of a B or a C.

Examples:
Fork = Resource | Data.
Meal = Breakfast | Lunch | Dinner.

3.3.4 Option
A = [B].

An A consists of a B or nothing.

Example:
SelectedDrink = [Tea | Coffee | Chocolate]. // Possibly none!

3.3.5 Quotes and bold font

Text in quotes or in a bold font stands for itself.

Examples:
ImportDeclaration = import Import {"," Import}.
OwnSymbol = "me" | self.

4 Language Symbols and Identifiers

4.1 Vocabulary and Representation
Symbols are identifiers, numbers, strings, operators, and delimiters. There are some lexical rules:

• Blanks and line breaks must not occur within symbols and are ignored unless they are
essential to separate two consecutive symbols (except in comments, and within strings).

• Capital and lower-case letters are considered as distinct.

4.2 Identifiers
Identifiers are sequences of letters and digits and underscores ‘_’. The first character must be a letter or
an underscore.

ident = (letter | "_") { letter | digit | "_" }.
letter = "A" | ... | "Z" | "a" | ... | "z" | // any other "culturally-defined" letter

The case of letters is significant in identifiers, except in predefined identifiers which may be written
either entirely in lower-case letters or entirely in upper-case letters (see 5.3.1 and section 17)

Examples:
X Scan Zonnon GetSymbol firstLetter

_external_package27 (* underscore typically used for interoperability with other languages *)

4.3 Modifiers and Specifiers
A modifier is used to indicate alternative semantics, where the same syntax is used for more than one
purpose. It is a list of identifiers contained in braces and separated by commas. The valid identifiers
depend on the context in which the modifier is applied.

Modifiers = "{" IdentList "}".
IdentList = ident { "," ident }.

Zonnon Language Report: Release v04 r00 b00 Saved on 28 July 2009 5

ident = (letter | "_") { letter | digit | "_" }.
letter = "A" | ... | "Z" | "a" | ... | "z" | // any other "culturally-defined" letter

Examples:
{ value } { public } { public, value}

A specifier is used to provide additional information such as the type of an expected object, or a width.
It comprises a list of words or numbers contained in braces { } or an EBNF protocol specification (See
also 5.3.4)

Examples:
var r: real{32}; (* real in 32-bit format *)
i := integer(t); (* the value of t expressed as an integer *)
{ bodypart = LEG | NECK| ARM} (* EBNF protocol *)

4.4 Numeric Constants
Numbers are (unsigned) integer, cardinal or real constants. If the constant is specified with the suffix H,
the representation is hexadecimal, otherwise the representation is decimal. A real number always
contains a decimal point and optionally it may also contain a decimal scale factor. The letter E means
‘times ten to the power of’. A numeric constant may optionally be followed by a width modifier which
is the number of bits to be used for its representation (surrounded by braces). If no width is specified
then the default value defined in the Zonnon Programmers’ Manual is used [Compiler]. For further
information on types see 12.1.

number = (whole | real) ["{" Width "}"].
whole = digit {digit} | digit {hexDigit} "H".
real = digit {digit} "." {digit} [ScaleFactor].
ScaleFactor = "E" ["+" | "–"] digit {digit}.
hexDigit = digit | "A" | "B" | "C" | "D" | "E" | "F".
digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9".
Width = ConstExpression.

A whole constant is compatible with both integer (signed) types and cardinal (unsigned) types.

Examples:

constant type value
1991 integer or cardinal 1991
0DH{8} integer{8} or cardinal{8} 13
12.3 real 12.3
4.567E8 real 456700000
0.57712566E–6{64} real{64} 0.00000057712566

4.5 Character Constants
A character constant is a character enclosed in single (') or double (") quote marks. The opening quote
must be the same as the closing quote and must not be the character itself. Character constants may also
be denoted by the ordinal number of the character in hexadecimal notation followed by the letter X.

CharConstant = '"' character '"' | "'" character "'" | digit { HexDigit } "X".
character = // Any character from the alphabet except the current delimiter character

This is useful for expressing special characters that are either non-printable or that are part of an
extended character set.

Examples:
"a" 'n' "'" '"' 20X

4.6 String Constants
String constants are sequences of characters enclosed in single (') or double (") quote marks; the
opening quote must be the same as the closing quote. A string constant may not contain its delimiting
quote character or a line break. The number of characters in a string is called its length. A single
character string constant (of length 1) can be used wherever a character constant is allowed and vice
versa. String constants can be assigned to variables of type string (see 5.3.1).

StringConstant = '"' { character } '"' | "'" { character } "'".

Zonnon Language Report: Release v04 r00 b00 Saved on 28 July 2009 6

character = // Any character from the alphabet except the current delimiter character

Examples:
"Zonnon" "Don't worry!" "x" 'hello world'

4.7 Reserved Words, Delimiters and Operators
Operators and delimiters are the special characters, character pairs, or reserved words listed below.

4.7.1 Reserved Words

The following reserved words (shown in bold in this report) may not be used as identifiers and are
written either entirely in lower-case letters:

accept activity array as await begin by case const definition div do else elsif end exception exit false for if
implementation implements import in is loop mod module new nil object of on operator or procedure
protocol record refines repeat return self termination then to true type until var while

or entirely in upper-case letters:
ACCEPT ACTIVITY ARRAY AS AWAIT BEGIN BY CASE CONST DEFINITION DIV DO ELSE ELSIF END
EXCEPTION EXIT FALSE FOR IF IMPLEMENTATION IMPLEMENTS IMPORT IN IS LOOP MOD MODULE
NEW NIL OBJECT OF ON OPERATOR OR PROCEDURE PROTOCOL RECORD REFINES REPEAT RETURN
SELF TERMINATION THEN TO TRUE TYPE UNTIL VAR WHILE

4.7.2 Delimiters

The delimiter characters are:
() [] { } . (dot) , (comma) ; (semicolon) : (colon) .. (range)

| (case separator) ' (single quote) " (double quote)

4.7.3 Predefined Operators

The predefined operators are:
– (unary minus) + (unary plus) ~ (negation)

** (exponentiation)

^ (unary dereference)

+ – * / div mod & or

:= (assignment) = (equality) # (not equal) < <= > >= in implements

4.7.4 User-Defined Operators

Zonnon introduces the concept of user-defined operators. They are declared like procedures. (See 6.3).

4.8 Comments
Comments may be inserted between any two symbols in a program. They are arbitrary character
sequences opened by the bracket (* and closed by *). Comments may be nested. They do not affect the
meaning of a program. They are shown in italics in this report.

(* this is a comment *)
(* This comment continues
 on to the next line *)
(* Nested comments (* look like *) this *)

5 Declarations
Declarations are used to introduce identifiers and to indicate their type.

Declarations = { SimpleDeclaration } { ProcedureDeclaration }.

SimpleDeclaration = (const [Modifiers] { ConstantDeclaration ";" }
 | type [Modifiers] { TypeDeclaration ";" }
 | var [Modifiers] { VariableDeclaration ";" }).

Zonnon Language Report: Release v04 r00 b00 Saved on 28 July 2009 7

5.1 Identifier Declarations and Scope Rules
Every identifier occurring in a program must be introduced by a declaration, unless it is predefined.
Declarations also specify certain permanent properties of an item, such as whether it is a constant, a
type, a variable (see 5.4), or a procedure (see section 1). The identifier is then used to refer to the
associated item.

The scope of an identifier is the scope to which its declaration belongs and hence to which it is
local. It excludes the scopes of identically named identifiers which are declared in nested blocks. The
scope rules are:

• No identifier may denote more than one item within a given scope (i.e. no identifier may be
declared more than once in a block).

• An identifier may only be referenced within its scope.

• Identifiers denoting object fields or methods/procedures are valid only in object designators,
where they must be qualified by the name of the object.

• Related declarations within a scope may be declared in any order.
IdentList = ident { "," ident }.

Examples:
Month.Oct (* see 5.3.3 *)
NameSpace.Program

5.1.1 Declaration Modifiers

Declarations may have optional modifiers which are defined as follows:
• private: the identifiers are visible only in the scope of their declarations.
• public: the identifiers are visible in the scope in which they are declared and in any

constructs that explicitly import the program construct that contains its declaration.
• immutable: is used in conjunction with public and indicates that values are read-only from

outside the scope in which of declaration.

Declaration modifiers may be used with declarations in the inner scope of a procedure/method.
SimpleDeclaration = (const [Modifiers] { ConstantDeclaration ";" }
 | type [Modifiers] { TypeDeclaration ";" }
 | var [Modifiers] { VariableDeclaration ";" }).

Example:
var {private} flag, statusWord: boolean; (* flag and statusWord are both private *)
var {public, immutable} refCount: integer; (* read only access *)

5.2 Constant Declarations
A constant declaration associates an identifier with a constant value.

ConstantDeclaration = ident "=" ConstExpression.
ConstExpression = Expression.

Examples:
const N = 10;
 limit = 2 * N – 1; (* see 6.2.2 *)
 fullSet = { min(set) .. max(set) }; (* see 5.3.1 *)

A constant expression is an expression that can be evaluated solely by a textual scan without actually
executing the program. Its operands must be constants or calls of predefined functions.

5.3 Type Declarations
A data type determines the set of values variables of that type may assume and the operators that are
applicable to them. A type declaration associates an identifier with a type. In the case of the structured
types (arrays and objects) it also defines the structure of variables of this type. Object types are defined
in 5.3.6 and 10.1

TypeDeclaration = ident "=" Type.

Zonnon Language Report: Release v04 r00 b00 Saved on 28 July 2009 8

Type = (TypeName ["{" Width "}"] | EnumType | ArrayType | ProcedureType
 | InterfaceType | ObjectType | RecordType | ProtocolType).

5.3.1 Basic Types

The basic types are denoted by predefined identifiers. The associated operators are defined in 6.2 and
the predefined function procedures in section 13. The values of the basic types are the following:

• object the generic type from which object types are derived (object is a reserved word)
• boolean the truth values true and false
• char the underlying character set of the environment
• integer the integers between min(integer) and max(integer)
• cardinal positive whole numbers between min(cardinal) and max(cardinal)
• fixed large numbers with fixed precision between min(fixed) and max(fixed)
• real the real numbers between min(real) and max(real)
• set the set of whole numbers (integer or cardinal) between 0 and max(set)
• string character strings
• range type which is used for indexing mathematical arrays (see 10.2.2)

5.3.2 Type widths

For types char, integer, cardinal, real and set the number of bits required to contain the value can be
specified by a modifier stating a whole number of bits as a constant value in braces { } after the type
name. The available widths for a given implementation are defined in the Zonnon Programmers’
Manual. The default type widths are:

char{16}, set{32}, integer{32}, real {80}, cardinal {32}, fixed{128}

For conversion between different types see section 5.3.12.

5.3.3 Enumeration Types

An enumeration is a type that comprises a named list of identifiers denoting the values which constitute
the type. These identifiers are qualified by the type name when used as named constants in the
program. The values are ordered and their ordering relation is defined by their textual sequence in the
enumeration list. No other values belong to the type. The ordinal number of the first value is zero and
increases by one for each subsequent identifier.

EnumType = "(" IdentList ")".
IdentList = ident { "," ident }.

Examples:
type NumberKind = (Bin, Oct, Dec, Hex);
 Month = (Jan, Feb, Mar, Apr, May, Jun, July, Sep, Oct, Nov, Dec);

Names in separate enumerations need not be different as their use is always qualified. So for example
NumberKind.Oct is distinct from Month.Oct.

Values of expressions can be converted to a different type. (See section 5.3.12).

The predefined function pred returns the value of the predecessor of the enumeration value given as its
parameter, for all except the first value of the enumeration. The predefined function succ returns the
value of the successor of the enumeration value given as its parameter, for all except the last value of
the enumeration.

5.3.4 Protocol types

A protocol is a special form of enumeration that also includes the syntax of the controlled interaction of
activities. In this case, the elements of the enumeration directly correspond to the terminal symbols in
the protocol EBNF syntax which defines the ordering of communication between activities. The EBNF
productions of the protocol are separated by commas, The last production must be the main (root)
production. The “?” character indicates a response from the partner activity. The list of enumerated
identifiers (of the EBNF tokens) may be null; this indicates that there is no communication between the
two activities involved. See section 9 for more details.

ProtocolDeclaration = protocol ProtocolName "=" "(" ProtocolSpecification ")" ";".

Zonnon Language Report: Release v04 r00 b00 Saved on 28 July 2009 9

ProtocolSpecification = [Alphabet ","] Grammar
 | Alphabet ["," Grammar].

Alphabet = TerminalSymbol { "," TerminalSymbol }.

Grammar = Production { "," Production }.

Production = ProductionName "=" Alternative.

Alternative = ItemSequence { "|" ItemSequence }.

ItemSequence = Item { Item }.

Item = (["?"] TerminalSymbol | ProductionName | TypeName |
 Alternative | Group | Optional | Repetition).

Group = "(" ItemSequence ")".

Optional = "[" ItemSequence "]".

Repetition = "{" ItemSequence "}".

TerminalSymbol = number | ident | charConstant.

ProductionName = ident.

Example:
protocol P = (); (* a ‘null’ protocol *)
protocol UART = (* the tokens are enumerated as terminal symbols of the EBNF syntax *)
 (dataOUT = char, dataIN = char,
 readyToSend, clearToSend, dataOUT, clearToReceive, readyToReceive, dataIN,
 readyToSend ?clearToSend dataOUT} | { ?clearToReceive readyToReceive {?dataIN} }
)

See also the extended example in Section 16.

5.3.5 Array Types

An array is a structure consisting of a number of elements that are all of the same type, called the
element type. Arrays can be indexed either by a positive whole number or by a value of an enumeration
type. In the first case, the number of elements in the array’s declaration determines its length. The
array’s elements are designated by indices, which are whole-number values between 0 and the array
length minus 1. In the second case the name of the enumeration type is used in the declaration and the
array’s elements are designated by values of the enumeration type.

The syntax rules for the array type are:
ArrayType = array Length {"," Length} of Type.
Length = ConstExpression | "*".

Arrays can be multidimensional; that is, the array elements may themselves be arrays, and mixing the
different length specification forms is acceptable in principle. An example and a counter example are:

type Acceptable = array * of array 42 of T; (* array *, 42 of T *)
 Jagged = array 42 of array * of T; (* 'jagged' array *)

The declaration array m, n of T is textually equivalent to array m of array n of T.

For example array * of array 42 of T can be written array *, 42 of T

The expression len(a, n) returns the number of elements in dimension n of the array a. The expression
len(a) is a shorthand for len(a, 0).

In an array the number of elements in any dimension may be variable and is then denoted by an
asterisk. It is the programmer’s responsibility to allocate storage space on the heap for an array by
using the reserved word new for each instance of the array:

arrayVariable := new ArrayType(length0, length1, …);

The length values must be expressed by positive expressions of integer or cardinal type and the number
of such expressions must correspond to the number of dimensions of the variable. An array must be
declared as either fully static or fully dynamic.

Examples of the use of arrays are:
type Vector = array * of integer;

procedure CreateAndReadVector(var a: Vector);
 var i, n: integer;
begin
 read(n);
 a := new Vector(n);
 for i := 0 to len(a) – 1 do

Zonnon Language Report: Release v04 r00 b00 Saved on 28 July 2009 10

 read(a[i])
 end
end CreateAndReadVector;

procedure InitializeMatrix(var mat: array *, * of real);
 var i, j: integer;
begin
 for i := 0 to len(mat, 0) – 1 do
 for j := 0 to len(mat, 1) – 1 do
 mat[i, j] := 0.0
 end
 end
end InitializeMatrix;
…
var m: array 10, 10 of real;
…
InitializeMatrix(m);

For information about math arrays, see 10.

5.3.6 The string Type

Variables of type string represent immutable sequences of characters.
Strings can be compared for equality and inequality by using the ‘=’ and ‘#’ operators. The operator ‘+’
signifies concatenation of strings and ‘:=’ signifies assignment. The predefined procedure copy
converts between string type and array of char representation and vice versa and the predefined
function len delivers the length of a string (see Section 13). The properties of the string type are not
defined as part of the Zonnon language; see Zonnon Programmers’ Manual [Compiler]. An example of
a library module Strings is shown in Section 15. String syntax and constants are defined in section 4.6.

5.3.7 Object Types

An object is a data type template comprising fields, methods and activities. The fields represent the
object’s state, the methods its functionality and the activities its concurrent activities. It can expose its
interface to its system environment in two ways. Firstly by the interface of its intrinsic type (referred to
as its intrinsic interface), that is the set of all the elements which the programmer chooses to make
public rather than keep private, and secondly by a number of definitions, each of which exposes a
distinct facet representing an aspect of the object’s services to its clients.

ObjectType = object ObjectDefinition ident.

ObjectDefinition = [FormalParameters] [ImplementationClause] ";"
 [ImportDeclaration]
 { SimpleDeclaration | ProcedureDeclaration |
 ProtocolDeclaration | ActivityDeclaration }
 (UnitBody | end).

Object = object [Modifiers] ObjectName ObjectDefinition SimpleName. // when declared as a unit

ImplementationClause = implements ImplementedDefinitionName { ","
ImplementedDefinitionName }.

ImplementedDefinitionName = DefinitionName | "[" "]".

ImportDeclaration = import Import { "," Import } ";".

Import = ImportedName [as ident].

ImportedName = (ModuleName | DefinitionName| ImplementationName
 | NamespaceName | ObjectName).

UnitBody = begin [StatementSequence] end.

An object is composed of declarations including constants, types, variables (referred to as fields), and
procedures (referred to as methods). Variables which are reference objects provide references to
objects which are created dynamically during program execution within the program using new. An
object may optionally have parameters which are used in the body of the object to initialize fields when
the object is instantiated using new.

The modifiers public and private can be used to declare the visibility of the contents of an object. If no
modifier is present then the default is private. Individual items may be made public by explicit use of
the modifier public following their declaration. The object itself can also have a modifier which

Zonnon Language Report: Release v04 r00 b00 Saved on 28 July 2009 11

denotes it as either a value object or a reference object using the modifier values value and ref
respectively. The default modifier is value.

The modifier protected can be used to declare that the object is a monitor [Monitor]. This is a construct
which at runtime prevents more than one thread of execution being executed within an object instance
at any time. It is used to manage mutually exclusive access to the fields within an object instance,
particularly in concurrent programs, see also section 9.4 .

Examples:
object {ref} Box(w, h: integer);
 var width, height: integer;

 procedure Area(): integer;
 begin
 return width * height
 end Area;

begin
 self.width := w; self.height := h (* self is optional in both cases here *)
end Box.
…
var box: Box;
…
box := new Box(3, 7); (* makes new Box object with width 3 and height 7 *)

See 10.2 on objects as separately compiled program units; object declarations cannot be nested.

5.3.8 Record Types

A record is a value object type. It can be used to encapsulate variable declarations. The keyword
record is equivalent to object {value}. Record declarations cannot be nested.

RecordType = record { VariableDeclaration ";" } end ident.

Examples:
record Position; (* declares the record-type Position *)
 x, y: integer
end Position;

which is equivalent to:

object {value} Position; (* declares the record-type Position *)
 var x, y: integer
end Position;

record Date; (* declares the record-type Date *)
 year: integer{8};
 month: Month;
 day: integer{8}
end Date;

5.3.9 Postulated Interface Types
An interface is a type for a postulated object composed from one or more definitions; see 5.3.10 and
10.2 for further details.

InterfaceType = object [PostulatedInterface].

PostulatedInterface = "{" DefinitionName { "," DefinitionName } "}".

For example: the construct
var x: object {D,E};

declares a variable of a generic object type with a specifier that defines that it implements the
definitions D and E. When an object instance is assigned to x at runtime it must at least implement
definitions D and E.

5.3.10 Procedure Types

A procedure type is a template for a procedure which can be referenced via a procedure variable. A
variable of a procedure type T has a procedure or method P or nil as its value. If P is assigned to a
variable of type T, the formal parameter lists of P and T must match according to a set of rules. (See

Zonnon Language Report: Release v04 r00 b00 Saved on 28 July 2009 12

12.4). P must not be a predefined procedure nor may it be local to another procedure. However, the
sole exception is a global module procedure, which may be used with or without qualification within
the module in which it is declared.

When a method is assigned to a variable of type procedure it must be prefixed by (the designator of) an
object instance that contains it. This may also be referred to as a ‘delegate’. When any procedure is
called it shares the thread of execution with its caller, on termination of the procedure the caller
resumes execution from the statement immediately following the call.

ProcedureType = procedure [ProcedureTypeFormals].
ProcedureTypeFormals = "(" [PTFSection { ";" PTFSection }] ")" [":" FormalType].
PTFSection = [var] FormalType { "," FormalType }.
FormalType = { array "*" of } (TypeName | InterfaceType).

Example:
type Delegate = procedure;
 Action = procedure (n: integer);
 Function = procedure (n: integer): integer;

5.3.11 Activity Types
An activity type is a template for an activity which can be instantiated and referenced via a variable. A
variable of an activity type T has an activity A or nil as its value. The declaration of an activity is very
similar to that of a procedure, however there are significant differences in their runtime behaviour.
When a procedure is called it shares the thread of execution with its caller, on termination of the
procedure the caller resumes execution from the statement immediately following the call. When an
activity is instantiated it then has its own thread of execution which lasts until the activity terminates.
Parameters are passed to and from an activity via a protocol using a procedure call –like notation. See
section 9.1 for more details and examples.

ActivityDeclaration = activity ActivityName [FormalParameters] [ProcImplementationClause]";"
 Declarations
 (UnitBody | end) SimpleName.

5.3.12 Conversion between Types

In Zonnon, type conversions within a ‘family’ (such as integer) are implicit when guaranteed to be
safe. However, conversions between families must be explicit (because a change of internal
representation is involved). Inverse conversions (for example, integer{32} to integer{16}) must always
be explicit. The exception mechanism detects conversion anomalies (see 7.10.1).

The interoperability between types is summarized in the table below and is based on the ECMA
Common Type System model [CLI], as used in .NET:

Type family width in bits
 8 16 32 64 128
fixed M

real M M

integer M M M M

cardinal M M M M

char M M

M mandatory type for conforming implementation

 implicit conversion always allowed (within same family)
, explicit conversion always allowed (change of representation)

Note that implicit conversions are transitive. Inverse conversion (in the opposite direction of the
arrows) requires an explicit conversion and may result in truncation or an exception.

Zonnon Language Report: Release v04 r00 b00 Saved on 28 July 2009 13

5.3.12.1 Type name used as conversion function (predefined types)

To achieve a type conversion, the name of the destination type is regarded as a built-in function which
takes an expression of the source type as a parameter and returns the converted value. An optional
second parameter indicates the desired width of the result.

Syntax:
TypeName "(" Expression ["," Size] ")"

Examples:
integer(x + e/f, 16)

is the value of the expression x + e/f represented as a 16-bit integer (exception may be raised if
conversion not possible).

integer(x + e/f)

is the value of the expression x + e/f represented as a 32-bit integer (assuming that 32 is the
implementation’s default width for integer).

Note that integers cannot be implicitly conversion to real and so:
var count, sum: integer; mean: real;
…
mean := sum / count

is not syntactically allowed and requires explicit conversions:
mean := real(sum) / real(count)

5.3.12.2 Type name used as conversion function (object types)

Zonnon supports both object-oriented programming and operator-style programming:

In object-oriented programming, the desired definition (interface) of a servant object needs to be
known but not its full type. If an object type X implements definitions D and E, instances of X can be
regarded as being of types D or E respectively, depending on the client’s perspective. So, if D exports a
method f and E exports a method g and x is a variable of type X, we can write D(x).f and E(x).g, for
example.
In operator-style programming, we apply operators to operands of a certain statically known type
(strong typing). For example, we might want to apply the operator procedure:

operator "*" (x: X; y: Y): Z; …

to generic objects:
var s, t: object;

We need to a type cast which takes the function-like type-name(expression) in this case:
if (s is X) & (t is Y) then z := f (X(s), Y(t)) else (* type error *) end

5.3.12.3 Implicit type of constant

The type of a simple numeric constant is determined by the declaration of the variable to which it is
assigned. So for instance, given the declaration:

var i: integer {16};

then the assignment
i := 1

is actually treated by the compiler as being
i := 1{16}

If no width is specified, then the default width for that type is assumed (see 5.3.2)

Other type conversions are achieved by means of predefined procedures (see Section 13).

Zonnon Language Report: Release v04 r00 b00 Saved on 28 July 2009 14

5.4 Variable declarations
A variable holds a value that can be assigned to it from an expression in an assignment operation (see
7.1). A variable is defined to have a type, which may not change, and which defines the set of values
that it may hold. Variable declarations introduce variables by defining an identifier and a data type for
each one.

VariableDeclaration = IdentList ":" Type.

Examples:
var i, j, k: integer;
 x, y: real;
 p, q: boolean;
 s: set {32};
 a: array 100 of real;
 name: array 32 of char;
 size, count: integer;
 mousePosition: Position;
 dateOfBirth, today: Date;

6 Expressions
An expression is a construct which specifies a computation. In an expression constants and current
values of variables are combined to compute other values by the application of operators and function
procedures. An expression consists of operands and operators; parentheses may be used to express
specific associations of operators and operands. The types of intermediate values used during
expression evaluation are the responsibility of the implementation (see [Compiler]). The type of the
result of an expression is defined in the section on expression compatibility (see 12.6).

Expression = SimpleExpression
 [("=" | "#" | "<" | "<=" | ">" | ">=" | in) SimpleExpression]
 | Designator implements DefinitionName
 | Designator is TypeName.

SimpleExpression = ["+"|"-"] Term { ("+" | "-" | or) Term }.

Term = Factor { ("*" | "/" | div | mod | "&") Factor }.

Factor = number
 | CharConstant
 | string
 | nil
 | Set
 | Designator
 | new TypeName ["(" ActualParameters ")"]
 | new ActivityName ["(" ActualParameters ")"]
 | "(" Expression ")"
 | "~" Factor

 | "!" Factor
 | Factor “**” Factor.

6.1 Operands and Designators
With the exception of set constructors (see 6.2.3) and literal constants (numbers, character constants, or
strings constants), operands are denoted by designators. A designator consists of an identifier referring
to a constant, variable, or procedure. This identifier may possibly be qualified by an identifier denoting
a module, definition, implementation or object and may be followed by selectors if the designated
object is an element of a structure.

ExpressionRange = Expression | Range.

Range = [Expressions] ".." [Expression] ["by" Expression] .

Designator = Instance
 | TypeName "(" Expression ["," Size] ")" // Conversion
 | Designator "^" // Dereference
 | Designator "[" ExpressionRange { "," ExpressionRange } "]" // Array element(s)
 | Designator "(" [ActualParameters] ")" // Function call
 | Designator "." MemberName // Member selector

Instance = (self | InstanceName | DefinitionName "(" InstanceName ")").

Zonnon Language Report: Release v04 r00 b00 Saved on 28 July 2009 15

Size = ConstantExpression.

ActualParameters = Actual { "," Actual }.

Actual = Expression ["{" [var] FormalType "}"]. // Argument with type signature

The ^ symbol is used so that a reference can optionally be made explicit in a program text.

Examples:

designator type meaning
size integer value of the variable called size
a[i] real the element of the array a at position i
dateOfBirth.day integer{8} the day field of the object called dateOfBirth
w[3].name[i] char the element at position i in the field called name of the

element at position 3 of the array called w

If a designates an array, then a[e] denotes that element of a whose index is the current value of the
expression e. The expression e must be of an enumeration, a cardinal or an integer type. A designator
of the form a[e0, e1, …., en] stands for a[e0][e1]….[en]. For further information about array indices see
10.2.

If obj designates an object, then obj.f denotes the field f of obj or the method f of the object obj, (see
11.1).

If the designated object is a constant or a variable, then the designator refers to its current value. If
it is a procedure without any parameter list, the designator refers to the procedure itself. However, if it
is a function procedure and is followed by a (possibly empty) parameter list it causes an activation of
that procedure and stands for its resulting value. The actual parameters must correspond to the formal
parameters as in proper (non-function) procedure calls. (See 7.2).

6.2 Predefined Operators
Predefined operators are fixed and built into the language. For further information about operators on
math arrays see 10.3.

6.2.1 Logical operators

These operators apply to boolean operands and yield a boolean result.

or logical disjunction p or q ‘if p then true, else q’
& logical conjunction p & q ‘if p then q, else false’
~ negation ~ p ‘not p’

6.2.2 Arithmetic operators

The operators +, –, and * apply to operands of numeric types in an expression. (See 6.3.1). The division
operator / applies only to operands of type real and produces a result of type real. When used as
monadic operators, – denotes sign inversion and + denotes the identity operation.

+ sum
– difference
* product
/ real quotient (of reals)
** power (x**y signifies xy)

Examples:
i := j + k;
x := real(i) / real(j); (* see section 5.3.12 *)

The operators div and mod apply to integer and cardinal operands only.

div integer quotient
mod modulus

They are related by the following formulas defined for any x and positive divisors y:
x = (x div y) * y + (x mod y)
0 <= (x mod y) < y

If the value of the divisor y is negative then the meanings of the operators div and mod are
mathematically ambiguous and so are left undefined; their effect is implementation specific. (See

Zonnon Language Report: Release v04 r00 b00 Saved on 28 July 2009 16

[Compiler]). It is recommended that programmers test for this condition and employ mathematics to
ensure that only positive divisors values are used. For example:

x y x div y x mod y
5 3 1 2

–5 3 –2 1

6.2.3 Set Operators

Set operators apply to operands of type set and yield a result of type set. The declared bit widths of the
operand SETs must be identical. The monadic minus sign denotes the complement of x, that is, –x
denotes the set of integers between 0 and max(set) which are not elements of x.
+ union bitwise or
– difference (x – y = x * (–y)) bitwise subtraction
* intersection bitwise and
/ symmetric set difference (x / y = (x – y) + (y – x)) bitwise exclusive or

A set constructor defines the value of a set by listing its elements, if any, between braces. The elements
must be integers in the range 0 .. max(set). A range m .. n denotes all integers in the interval starting
with element m and ending with element n, inclusive of m and n. If m > n then m .. n denotes an empty
set.

Set = "{" [SetElement { "," SetElement }] "}".
SetElement = Expression [".." Expression].

Examples of the use of sets:
const left = 0; right = 1; top = 2; bottom = 3;
var edges: set; x, y: integer;
begin
 edges := { }; (* the empty set *)
 if x < xMin then edges := edges + {left}
 …
 if left in edges then … (* clip at left *) …

const opCodemask = {0..3};
var opCode, word: set;
 …
 opCode := word * opCodeMask; (* extract the op-code *)

6.2.4 Relations

Relations yield a boolean result. The relations =, #, <, <=, >, and >= apply to the numeric types and
char. The relations = and # also apply to boolean, set and string, as well as to procedure types
(including the value nil). x in s stands for ‘x is an element of s’. x must be of an integer type, and s of
type set.

= equal
unequal
< less
<= less or equal
> greater
>= greater or equal
in set membership
implements x implements D is true if object x implements definition D
is x is T is true if and only if the intrinsic type of x is T, for any type T

Examples of expressions

expression type meaning
1991 integer simple constant value
i div 3 integer integer division of i by 3
~wellFormed or outOfRange boolean (not well-formed) or out-of-range
(i + j) * (i – j) integer arithmetic expression
s – {8, 9, 13} set{8} s with 8, 9, 13 removed
keys in {left, right} boolean keys is left or right or both
('0' <= ch) & (ch <= '9') boolean ch is a digit

Zonnon Language Report: Release v04 r00 b00 Saved on 28 July 2009 17

6.3 User-Defined Operators and Operator Declarations
Operator overloading introduces the notion of user-defined operators and the opportunity to use
familiar syntax in expressions involving them. Operators are defined only in a module implementing an
abstract data type i.e. one that defines a new user-defined type and that implements a set of operations
on it. Typically this can be used when introducing new data types such as complex numbers or
matrices.

6.3.1 Operators overloading

The set of predefined operators that can be overloaded is as follows:
– (unary minus) + (unary plus) ~
** (exponentiation)
^ (unary dereference)
+ – * / div mod & or
= # < <= > >= in
:= (assignment is a special case, see 6.3.3)

The precedence of operators is defined in 6.4.

Note that the implements and is operators cannot be overloaded, see 10.1.

6.3.2 New Operator Declarations

Overloaded and new operators are introduced as operator declarations. The syntax of the declaration is
as follows:

OperatorDeclaration = operator [Modifiers] OpSymbol [FormalParameters] ";" OperatorBody ";".
OperatorBody = Declarations UnitBody OpSymbol.
OpSymbol = string. // A 1, 2 or 3-character string; the set of possible symbols is restricted

Example:
record Complex;
 re, im: real;
end Complex;

operator '+' (x1, x2: Complex): Complex;
var res: Complex;
begin
 res.re := x1.re + x2.re;
 res.im := x1.im + x2.im;
 return res
end '+';

For all overloaded operators parameters are passed by value (as for all predefined operators) and the
operator must produce a result. The sole exception is for the assignment operator where the first
parameter must be passed by reference and the operator must not produce a result.

For overloaded operators the number of parameters in an operator declaration must be the same as
that of the predefined operator with the same symbol. For a new operator declaration the number of
parameters in an operator declaration must be one or two, depending on whether it is a unary or binary
operation.

It is only possible to declare overloaded and new operators in a module, but not in an object or
definition. The reason is to enable complete overloading resolution statically at compile time to support
strong type checking. This is also intended to clearly separate two concepts: objects implementing
interfaces (definitions) and abstract data types with associated operators. If necessary type conversion
must be used at runtime, for example: to apply the operator procedure “*”(x: X; y: Y): Z to the generic
objects var s, t: object would require conversion between types, so if s is of type X and t is of type Y
then z := f (X(s), Y(t)).

Operator declaration can be made available outside the module where it is declared. In that case, it
is legal to use those operators in units importing the module in normal expressions, together with the
predefined operators. The compiler is responsible for selecting the right version of the operator in each
case.

It is possible to define operators in a module to extend an abstract data type. These operators must
be defined in terms of the operations already defined in the module where the abstract data type is
declared.

Zonnon Language Report: Release v04 r00 b00 Saved on 28 July 2009 18

Normally, all imported entities should be qualified by the name of the imported unit. This is also
possible, but not required, for operators. For example, there are two legal ways to use ‘new addition’
for operands of some type T.

module M;
 type {public} T = …;
 operator {public} "+" (a, b: T): T;
 begin
 …
 end "+";
end M.

object Obj;
 import M;
 var x, y : T;
begin
 x := x + y; (* like a normal expression *)
 x := x M."+" y; (* fully qualified, but less conventional *)
end Obj.

An operator procedure cannot be called as a normal function:
x := M."+"(x, y); (* not legal; must use expression notation *)

6.3.3 Rules governing overloading

The following set of rules applies to overloaded operators:

1) Operators can only be introduced to define previously undefined operations, but not to
refine previously defined operations

2) The type of at least one operand of an overloaded operator must be a user-defined type
(an array type defined without {math} modifier, an object type, a procedure type, an
enumeration type). It is illegal to introduce user-defined operator versions for ‘basic’
types such as integer, real, and boolean.

3) Specifying an object type with a specified interface (such as object { D }) as the
operator’s parameter is not allowed. The reason is that it must be possible to resolve
operator overloading completely at compile time (i.e. statically).

4) The number of arguments, the precedence of an overloaded operator and the form (prefix
or postfix) of unary operators, must be the same as those features for predefined operators
with the same symbols.

5) The dereference construct with ‘^’ symbol (see Designator production in the syntax) is
considered here as postfix unary operator. Therefore, any overloaded ^ operator keeps the
form of unary postfix operator; similarly, unary + and – operators are always unary prefix
operators.

6) All operators except assignment must produce a result, which may be of any type.
7) It is also possible to overload assignment. In this case, the assignment symbol is

considered as a special operator with the symbol ‘:=’ performing a certain side effect and
producing no value. Note that the assignment operator can be used to copy the value of an
object of the same type. If it is overloaded with parameters of the same object type then it
will be used instead of the predefined := operator for that type. In any case the value is
copied by default by the predefined assignment operator semantics.

8) In the overloaded operator for assignment there must be two parameters, and the first one
must be passed by reference.

9) The number of operands of a new operator is determined by the number of parameters
from the operator declaration. (See section 9).

10) It is legal to specify more than one version of the overloaded and new operators with the
same symbol; in that case, the types of the parameters of the corresponding operator
declarations must differ from any other operator declaration for the same symbol. (See
section 6.3.1)

11) Overloaded operators can only be defined in a module where at least one of the operands
is declared.

Zonnon Language Report: Release v04 r00 b00 Saved on 28 July 2009 19

6.4 Operator Precedence
Four classes of operators with different levels of precedence (binding strengths) are syntactically
distinguished when used in expressions. Operators of the same precedence associate from left to right.
For example, x – y – z stands for (x – y) – z. Operator precedence from highest to lowest is:

1. unary negation operator ~
2. exponentiation operator **
3. multiplication operators * div mod /
4. addition operators + -
5. relations < <= = # >= > implements in is

The available operators are listed in the following tables. Some operators are applicable to operands of
various types, denoting different operations. In these cases, the actual operation is effectively
‘overloaded’ and the appropriate one to use is identified by the type of the operands. The operands
must be expression compatible with respect to the operator, see 12.6.

6.5 Numeric resolution within expressions
An expression consists of a series of evaluations of operators on their operands. For each operator the
relationship between the resolution (width) of each of its operands and the result of the operation is
defined as follows:

operator first operand second operand result
+ integer{s} integer{t} integer{max(s, t)}
– integer{s} integer{t} integer{max(s, t)}
* integer{s} integer{t} integer{s + t}
div integer{s} integer{t} integer{s}
mod integer{s} integer{t} integer{t}
** integer{s} integer{t} integer{s + t}
+ cardinal{s} cardinal{t} cardinal{max(s, t)}
– cardinal{s} cardinal{t} cardinal{max(s, t)}
* cardinal{s} cardinal{t} cardinal{s + t}
div cardinal{s} cardinal{t} cardinal{s}
mod cardinal{s} cardinal{t} cardinal{t}
+ real{s} real{t} real{max(s, t)}
– real{s} real{t} real{max(s, t)}
* real{s} real{t} real{s + t}
/ real{s} real{t} real{s + t}
** real{s} real{t} real{s + t}
+ fixed fixed fixed
– fixed fixed fixed
* fixed fixed fixed
/ fixed fixed fixed
** fixed fixed fixed
Note: max(s, t) = s, if s > t else t

The compiler implementation is responsible for conserving the integrity of intermediate values during
the evaluation of an expression [Compiler].

7 Statements
Statements denote actions. There are elementary and structured statements. Elementary statements are
not composed of any parts that are themselves statements. They are the assignment, the procedure call,
await, return and exit statements. Structured statements are composed of parts that are themselves
statements. They are used to express sequencing and conditional, selective, and repetitive execution. A
statement may also be empty, in which case it denotes no action. The empty statement is included in
order to relax punctuation rules in statement sequences.

Statement = [Assignment
 | ProcedureCall
 | IfStatement
 | CaseStatement
 | WhileStatement
 | RepeatStatement
 | LoopStatement
 | ForStatement
 | await Expression

Zonnon Language Report: Release v04 r00 b00 Saved on 28 July 2009 20

 | exit
 | return [Expression { "," Expression }]
 | BlockStatement
 | Send
 | Receive
 | SendReceive
 | Accept
 | LaunchActivity
 | AnonymousActivity
].

Statement sequences denote the sequence of actions specified by the component statements which are
separated by semicolons.

StatementSequence = Statement { ";" Statement }.

Example:
temp := a; a := b; b := temp (* swap values in a and b*)

7.1 The Assignment Statement
An assignment statement replaces the current value of a variable by a new value specified by an
expression. The expression must be assignment compatible with the variable. (See 12.4). The
assignment operator is written as ‘:=’ and pronounced as ‘becomes’.

Assignment = Designator { "," Designator } ":=" Expression { "," Expression }.

Note that multiple assignments may be made using a single statement. The effect when such statements
are evaluated is as follows:

1. Each expression on the right-hand side is evaluated to produce a value.

2. Then the values are assigned in any order to their corresponding designated variables on the
left-hand side.

The semantics are the same as for guarded commands [Dijkstra] and support the possibility of
execution.

Examples:
i := 0;
p := i = j;
x := i + 1;
k := log2(i + j);
F := log2;
s := {2, 3, 5, 7, 11, 13};
a[i] := (x + y) * (x – y);
t.key := I;
w[i + 1].name := "John";
t := c;
x, y, z := a ,b, c;

7.1.1 Indexer Assignments
It is convenient to access the fields within an object as if it were an array using an indexer, otherwise
such variables are usually indirectly accessed via specific method calls. Indexer access is achieved
using a built-in generic definition called “[]” with actual methods Get and Set which enable object
types to implement this definition. The Get and Set methods implement the indexed mapping from the
callers index to the objects fields. A template for this is:
 object x implements … , [] ;

 …
 procedure Get (i, j: integer): real implements [].Get ;
 begin … (* implements self [i, j] *)
 end Get;

 procedure Set (i, j: integer; x: real): implements [].Set ;
 begin … (* implements self [i, j] := x *)
 end Set;
 …
 end x;

Zonnon Language Report: Release v04 r00 b00 Saved on 28 July 2009 21

For indexed access of an object the following abbreviated syntax is allowed:
ImplementationClause = implements
 ImplementedDefinitionName { ","ImplementedDefinitionName }.

ImplementedDefinitionName = DefinitionName | "[" "]".

 var x: X;
 x[i, j] (* instead of [](x).Get(i, j) *)
 x[i, j] := 3.14; (* instead of [](x).Set(i, j, 3.14) *)

For an indexer the number of index dimensions allowed depends on the compiler implementation
[Compiler].

7.1.2 Abstract Assignments
The notion of an indexer is also used to achieve a so-called abstract assignment for direct access to a
field of an object. Here the assignment operator “:=” is dropped and the abstract assignment is re-
interpreted as the Set method of a zero dimensional indexer.

A template for defining an abstract assignment is:
 object A implements [] ;

 …
 procedure Set (b: B): implements [].Set ;
 begin … (* implements self [] := b *)
 end Set;
 …
 end A;

This can be then used in a full or an abbreviated form as follows:
 var a: A; b: B;

 …
 a[] := b; (* full form *)
 a := b; (* abbreviated form *)

7.1.3 Properties

A property is a variable or object field for which access procedures are provided by the programmer
and automatically called whenever its variable is accessed. Whenever the value of the variable is
accessed in an expression the function that implements Get is called. Also whenever the value of the
variable is set by an assignment, the procedure that implements Set, is called. A variable for which only
a Get property is provided is ‘read only’ and a variable for which only a Set property is provided is
‘write only’.
The behavior of a property is defined by its implicit methods Get and Set. So, for a property p: P
defined in a definition D the objects implementation has the form:

 definition D;

 var p: P;
 end D.

 object Obj implements D;

 procedure f (…): P implements D.p.Get;
 (* 'getter': called automatically whenever p is accessed *)
 begin …
 return (…)
 end f;

 procedure g (…) implements D.p.Set;
 (* 'setter': called automatically whenever p is assigned the value of the expression *)
 begin …
 end g;
 end Obj.

The invocation of the property’s Get and Set methods is transparent in the original program text at the
access; in other words their behaviour is effectively a side effect, but an intentional one.

Zonnon Language Report: Release v04 r00 b00 Saved on 28 July 2009 22

7.2 The Procedure Call
Within a module a procedure call invokes a procedure. When it is declared within an object a procedure
is referred to as a method. In either case it may contain a list of actual parameters which replace the
corresponding formal parameters defined in the procedure declaration. (See section 1). The
correspondence is established by the relative ordering of the parameters in the actual and formal
parameter lists. There are two kinds of parameters: variable and value parameters.

If a formal parameter is a variable parameter, the corresponding actual parameter must be a
designator denoting a variable. If it denotes an element of a structured variable, the component
selectors are evaluated when the formal/actual parameter substitution takes place, i.e. before the
execution of the procedure. If a formal parameter is a value parameter, the corresponding actual
parameter must be an expression. This expression is evaluated before the procedure activation, and the
resulting value is assigned to the formal parameter.

ProcedureCall = Designator.

Examples:
WriteInt(i * 2 + 1)
inc(w[k].count)
t.Insert("John")

A method call consists of the name of an object, followed by a period and then the name of a procedure
declared within the object type declaration of the object. Within the method the reserved word self
refers to the object on which the method was called.

A specific procedure call may also be ‘safeguarded’, by prefixing the object with a definition. For
example:

object T implements I, D; … end T;
var t: T;

A client who wants to make specific use of t’s interpretation of the services specified by D (e.g. as a
supercall) would then simply call D’s methods and fields safeguarded by t:

D(t).f(..); ..; .. := D(t).x;

The order in which the parameters is evaluated during procedure/method invocation is defined in the
Zonnon Programmers’ Manual [Compiler].

7.3 The if Statement
IfStatement =
 if Expression then StatementSequence
 {elsif Expression then StatementSequence}
 [else StatementSequence]
 end.

Example:
if ("A" <= ch) & (ch <= "Z") then ReadIdentifier
elsif ("0" <= ch) & (ch <= "9") then ReadNumber
elsif (ch = "'") or (ch = ' " ') then ReadString
else SpecialCharacter
end

An if statement specifies the conditional execution of guarded statement sequences. The expression
preceding a statement sequence is called its guard and its type must be boolean. The guards are
evaluated in sequence of occurrence; if one evaluates to true, its associated statement sequence is
executed. If no guard is satisfied, the statement sequence following the symbol else is executed, if there
is one.

7.4 The case Statement
The case statement specifies the selection and execution of a statement sequence according to the value
of an expression. First the case expression is evaluated then the statement sequence whose case label
list contains the obtained value is executed. The case expression must either be of an integer or cardinal
type that is expression compatible (see 12.6) with the types of all case labels, or both the case
expression and the case labels must be of type char or an enumeration. case labels are constants, and
no value must occur more than once. If the value of the expression does not occur as a label of any

Zonnon Language Report: Release v04 r00 b00 Saved on 28 July 2009 23

case, the statement sequence following the symbol else is selected, if there is one, otherwise the
UnmatchedCase exception is raised (see 7.10.1).

CaseStatement = case Expression of
 Case { "|" Case }
 [else StatementSequence]
 end.
Case = [CaseLabel { "," CaseLabel } ":" StatementSequence].
CaseLabel = ConstExpression [".." ConstExpression].

Example:
case ch of
 "A" .. "Z": ReadIdentifier (* assumes contiguous encoding of letters*)
 | "0" .. "9": ReadNumber
 | "'", '"': ReadString
 else SpecialCharacter
end

case month of
 Month.Apr, Month.Jun, Month.Sep, Month.Nov: days := 30
| Month.Feb:
 if Leap(year) then
 days := 29
 else
 days := 28
 end
 else days := 31
end

7.5 The while Statement
The while statement specifies the repeated execution of a statement sequence while the expression of
type boolean (its guard) yields true. The guard is checked before every execution of the statement
sequence and so the statement sequence will be executed zero or more times.

WhileStatement = while Expression do StatementSequence end.

Examples
var i, k, idNumber: integer;
…
while i # 3 do writeln('Hello'); i := i + 1 end

read(idNumber);
while ~Valid(idNumber) do
 write('Type ID number again ');
 read(idNumber)
end;
(* Valid(idNumber) *)

while i > 0 do i := i div 2; k := k + 1 end

while (t # nil) & (t.key # i) do t := t.left end

7.6 The repeat Statement
A repeat statement specifies the repeated execution of a statement sequence until a condition specified
by an expression of type boolean is satisfied. The statement sequence is executed at least once.

RepeatStatement = repeat StatementSequence until Expression.

Examples:
var idNumber: integer;

repeat
 write ('Type ID number '); read(idNumber)
until Valid(idNumber);
…

var i, x: integer; buffer: array 10 of integer;
…
(* convert non-negative value of x to decimal representation *)
i := 0;
repeat buffer[i] := x mod 10; x := x div 10; inc(i) until x = 0;

Zonnon Language Report: Release v04 r00 b00 Saved on 28 July 2009 24

(* write out digit characters in correct order *)
repeat dec(i); write(char(buffer[i] + integer("0"))) until i = 0

7.7 The for Statement
A for statement specifies the repeated execution of a statement sequence for a fixed number of times
while a progression of values is assigned to a variable of integer or cardinal type called the control
variable of the for statement.

ForStatement = for ident ":=" Expression to Expression [by ConstExpression] do
 StatementSequence
end.

The statement
for v := low to high by step do statements end

is equivalent to
v := low; temp := high;
if step > 0 then
 while v <= temp do statements; v := v + step end
else
 while v >= temp do statements; v := v + step end
end

The value of the expression low must be assignment compatible with v and that of high must be
expression compatible with v. The value of step must be a non-zero constant expression of an integer or
cardinal type. If by step is omitted, then step defaults to the value 1.

Example:
var i : integer;
…
for i := 0 to 79 do k := k + a[i] end
for i := 79 to 1 by –1 do a[i] := a[i–1] end

7.8 The loop Statement
A loop statement specifies the repeated execution of a statement sequence. It is terminated upon
execution of an exit statement within that sequence.

LoopStatement = loop StatementSequence end.

Example:
loop (* copy integers from input to output until 0 is typed *)
 read(i);
 if i = 0 then exit end;
 write(i)
end

loop statements are useful for expressing repetitions with several exit points or cases where the exit
condition occurs naturally in the middle of the repeated statement sequence.

An exit statement is denoted by the symbol exit. It specifies termination of the enclosing loop
statement and continuation with the statement following that loop statement. An exit statement is
contextually, although not syntactically, associated with the loop statement which contains it.

7.9 The return Statement
A return statement is used within procedures and activities. In a procedure it is used to return a value
from back its caller. It is denoted by the symbol return, followed by an expression if the procedure is a
function procedure. The type of the expression must be assignment compatible (see 12.4) with the
result type specified in the procedure. Function procedures require the presence of a return statement
indicating the result value. In proper procedures, a return statement is implied by the end of the
procedure body. Any explicit return statement therefore appears as an additional (probably
exceptional) termination point.

In an activity the return statement must have a parameter and it is used to return the parameter
value back to the client activity according to a protocol. However, in contrast to procedures statement
execution continues with the next statement in the activity. See also section 9.2.2.

Zonnon Language Report: Release v04 r00 b00 Saved on 28 July 2009 25

7.10 The Block Statement
The block statement allows the grouping together of logically related statements and the introduction of
exception handlers. Block statements can be nested.

BlockStatement = do [Modifiers]
 [StatementSequence]
 { ExceptionHandler }
 [CommonExceptionHandler]
 [TerminationHandler]
 end.

The statement sequence within the block is carried out.

7.10.1 Exception Handling

If an exception occurs then the exception handlers are tried in the order in which they appear textually
until one that matches the exception is found or the general exception is reached. The statement
sequence corresponding to the exception name is then carried out.

ExceptionHandler = on ExceptionName { "," ExceptionName } do StatementSequence.
CommonExceptionHandler = on exception do StatementSequence.
TerminationHandler = on termination do StatementSequence.

Exception names take the form of predefined identifiers and include:
• ZeroDivision: division by zero
• Overflow: value does not lie within min(type) .. max(type)
• OutOfRange: array index out of bounds
• NilReference: uninitialized array/object/activity/protocol instance
• UnmatchedCase: control flow reached missing else in case statement
• Conversion: invalid type conversion (not guarded by ‘t is type’)
• Read: wrongly formatted input value for read or readln
• ProtocolMismatch: the sequence of use of tokens does not match the EBNF protocol syntax
• IncompatibleSizes: math arrays have incompatible sizes
• NoSLUSolution: system of linear equations doesn’t have a solution

Extra information about the exception can be accessed by calling the predefined function reason. This
causes the runtime system to return a string which explains the reason for the exception, and possibly
the system context, to aid program development. For example:

do
 Statements
on T1, T2 do
 (* reason returns a string containing system defined info and the name T1 or T2 *)
 s := reason
on exception do
 (* reason returns a string with the name of the exception thrown and possible system-defined information *)
 s := reason
end

If reason is called outside the scope of an exception it returns the current error or warning status
information from the runtime system. See also [Compiler].

The following form acts as a ‘catch all’:
do
 Statements
…
on exception do
 CatchAll
end

means that CatchAll is only executed if an exception has occurred but no textually earlier exception
clause in the block matched the exception.

 Example:
var idNumber: integer; idValid: boolean;
begin
 do
 read(idNumber);
 if Valid(idNumber) then

Zonnon Language Report: Release v04 r00 b00 Saved on 28 July 2009 26

 idValid := true; Process(idNumber)
 else
 idValid := false (* wrong number *)
 end
 on exception do
 idValid := false (* wrong sort of characters typed *)
 end
end

7.11 The await Statement
The await statement is used for conditional scheduling within an activity in an object or module [AOS].

await Expression

It must occur within a block statement which has a locked modifier. The expression defines the
precondition of continuation of execution.

When it is executed the Boolean expression is evaluated and if it is true then execution continues at
the next statement. However, if it is false then execution is suspended until the system scheduler
subsequently re-evaluates the condition (possibly on more than one occasion) and finds that it has
become true. When this occurs execution continues at the next statement.

Example: object Buffer

This example shows how a first-in-first-out buffer can be implemented using an object. The producer,
which ‘puts’ the data, is assumed to belong to a different activity to the consumer, which ‘gets’ it. The
await statements regulate the content of the buffer. The locked modifiers ensure mutual exclusion of
access to the shared buffers whenever they are being altered, to conserve their integrity.

object Buffer;
(* First-in first-out buffer ('thread safe') *)
 const bufLen = 1000;
 var data: array bufLen of integer;
 in, out: integer;

 procedure {public} Put (i: integer); (* put element into the buffer *)
 begin {locked}
 await (in + 1) mod bufLen # out; (* wait until not full *)
 data[in] := i;
 in := (in + 1) mod bufLen
 end Put;

 procedure {public} Get (var i: integer); (* get element from the buffer *)
 begin {locked}
 await in # out; (* wait until not empty *)
 i := data[out];
 out := (out + 1) mod bufLen
 end Get;

begin
 in := 0; out := 0;
end Buffer;

7.12 Protocol Send, Receive, SendReceive, Accept and Return Statements
There are several statements associated with activities and protocols, they are the send, receive,
sendReceive, accept and return statements. They are described in sections 9.2.1 and 9.2.2.

7.13 Activity Launch Statement
An activity is launched using new to instantiate it, and possibly to provide initializing parameters, see
section 9.1 for details.

LaunchActivity = new ActivityName ["(" ActualParameters ")"].

8 Procedure and Method Declarations and Formal Parameters
A procedure declaration consists of a procedure heading and a procedure body. The heading specifies
the procedure’s identifier and its formal parameters, if any. The body contains declarations and
statements. The procedure identifier is repeated at the end of the procedure declaration. A procedure
declared within an object is called a method.

Zonnon Language Report: Release v04 r00 b00 Saved on 28 July 2009 27

There are two kinds of procedures: proper procedures and function procedures. The latter are
activated by a function designator as a constituent of an expression and yield a result that is an operand
of the expression. Proper procedures are activated by a procedure call. A procedure is a function
procedure if its formal parameters specify a result type. The body of a function procedure must contain
a return statement that defines its result.

All constants, variables, types, and procedures declared within a procedure body are local to the
procedure. Since procedures may be declared as local items too, procedure declarations may be nested
(subject to implementation restrictions). The call of a procedure within its declaration implies recursive
activation.

In addition to its formal parameters and locally declared items, the items declared in the
environment of the procedure are also visible in the procedure (with the exception of those items that
have the same name as an item declared locally).

ProcedureDeclaration = ProcedureHeading [ProcImplementationClause] ";" [ProcedureBody ";"].
ProcImplementationClause = implements ImplementedMemberName { ","
 ImplementedMemberName }.
ImplementedMemberName = (DefinitionName | "[" "]") "." MemberName.
ProcedureHeading = procedure [Modifiers] ProcedureName [FormalParameters].
ProcedureBody = Declarations UnitBody SimpleName.
FormalParameters = "(" [FPSection { ";" FPSection }] ")" [":" FormalType].
FPSection = [var] ident { "," ident } ":" FormalType.

Formal parameters are identifiers declared in the formal parameter list of a procedure. They correspond
to actual parameters specified in the procedure call. The correspondence between formal and actual
parameters is established when the procedure is called. There are two kinds of parameters, value and
variable parameters, indicated in the formal parameter list by the absence or presence of the keyword
var. Value parameters are local variables to which the value of the corresponding actual parameter is
assigned as an initial value. Variable parameters correspond to actual parameters that are variables, and
they stand for these variables. The scope of a formal parameter extends from its declaration to the end
of the procedure block in which it is declared. A function procedure without parameters must have an
empty parameter list. It must be called by a function designator whose actual parameter list is empty
too.

The rules for the correspondence between formal and actual parameters are as follows. Let Tf be the
type of a formal parameter f (not an open array) and Ta the type of the corresponding actual parameter
a. For variable parameters, Ta must be the same as Tf, or Tf must be an object type and Ta must be
derived from Tf. For value parameters, a must be assignment compatible with f. (See 12.4).

If Tf is an open array, then a must be array compatible with f. (See 12.5). The lengths of f are taken
from a.

8.1 Procedure Modifiers
A modifier may optionally occur after the reserved word procedure to denote its nature. The following
modifiers are defined:

• private: the procedure is only visible in the scope in which it is declared; this is the default.
• public: the procedure is visible in the scope in which it is declared and within any construct

that imports the construct in which it is declared.
• sealed: the procedure may not be further redefined (overridden),

 The inverse of being sealed is referred to as being open

Examples:
procedure ReadInt(var x: integer);
 var i: integer; ch: char;
begin
 i := 0; read(ch);
 while ("0" <= ch) & (ch <= "9") do
 i := 10 * i + (integer(ch) – integer("0")); read(ch)
 end;
 x := i
end ReadInt;

procedure {private} WriteHex(x: integer);
(* precondition: 0 <= x < 100000H *)
 var i: integer; buf: array 5 of integer;
begin
 i := 0;

Zonnon Language Report: Release v04 r00 b00 Saved on 28 July 2009 28

 repeat buf[i] := x mod 10H; x := x div 10H; inc(i) until x = 0;
 repeat dec(i);
 if buf[i] < 10 then write(char(buf[i] + integer("0")))
 else write(char(buf[i] – 10 + integer("A")))
 end
 until i = 0
end WriteHex;

procedure log2(x: integer): integer;
(* precondition: x > 0 *)
 var y: integer;
begin
 y := 0;
 while x > 1 do x := x div 2; inc(y) end;
 return y
end log2;

9 Concurrency, Activities and Protocols
Zonnon can be used to write either sequential or concurrent programs. They can be designed in a
modular- or an object oriented style, or a mix of both. It is possible to express the concurrency structure
of the program’s solution using dynamically instantiated activities, each of which has its own thread of
statement execution. Pairs of activities can be bound together by a protocol type and interact via links
according to a dialog specified in EBNF. The topology of the network is created dynamically at run
time by the program i.e. the links are logical rather than physical and the activities are not pre-allocated
to particular processors. There may be one or more processors. The execution of the activities is
dynamically scheduled by the runtime system.

Zonnon is designed for writing high-level concurrent programs in a clear, well structured and type-safe
way. The important point is that it should be possible to express concurrent problem solutions in a
natural way i.e. in terms of high-level abstractions rather than direct manipulations of low-level
abstractions such as processes, threads or fibers via library calls.

9.1 Activities, Active Objects and Active Modules
An activity encapsulates its own state space and a thread of execution of statements separate from that
of the new statement which instantiates and then initiates it. This enables modules and objects to
contain one or more dynamically created separate activities which can then be allocated by the runtime
system to one or more processors for execution. Activities run in addition to, and concurrently with, the
program’s thread of execution shared by all the module and object bodies. Objects and modules can
develop structures of cooperating activities dynamically and facilities are available for managing
simultaneous access to object and module state spaces, see 10.

Activities can be declared wherever procedures can be declared and they resemble them syntactically,
however they differ from procedures in some respects:

1. Activities are declared and then instantiated using the new operator rather than being called.
2. An activity declaration may be instantiated many times to create many clone activities.
3. There is one exception to this when an anonymous activity is declared in-line at the statement

level. In this case it is instantiated when its statement is executed.
4. Any instantiated activity executes independently from its creator and has its own procedure

activation stack.
5. Activities only terminate when all statements within their body have been executed.
6. An activity may optionally implement a ‘protocol’ which syntactically defines an exchange of

tokens with its parent activity.

Activities use a procedure-like model of parameter passing to achieve the passing of protocol tokens.
Notice that a simple form of ‘multiple assignment’ is provided for an activity to conveniently receive a
list of tokens, see.7.1.2 . From this viewpoint a procedure call can be considered an equivalent of an
activity so:

procedure P (s: S; t: T): R; ….; r := P(s, t)

is equivalent to

do
 create activity of type P; send tokens s and t; receive tokens r

Zonnon Language Report: Release v04 r00 b00 Saved on 28 July 2009 29

end

The reserved word activity is used to differentiate an activity declaration from that of a procedure. Once
an activity has been declared then instances of it can be created in any active object or module.
Activities provide a means of encapsulating concurrent behavior added to an object or module (in its
role as a singleton object). An object may contain an arbitrary number of activities, or none at all, in
which case it is a passive object. Typically activities are private to the object (or module) that contains
them and are instantiated by the constructor new.

Example:

object Cell (* of a pipeline *); (* declaration of an object *)
 type Job = …;
 var in, out, n: integer; (* the object's state space when instantiated *)
 buf: array N of Job;

 procedure Get (j: Job); (* the object's methods *)
 begin …
 end Get;

 procedure { public } Put (j: Job);
 begin …
 end Put;

 activity Process; (* activity declaration within the object *)
 var … (* declare state space of the activity *)
 begin
 …
 end Process;

 var p: Process; (* reference variable for an activity instance *)

begin
 n := 0; in := 0; out := 0;
 p := new Process (* create an activity instance in the instance of the Cell object *)
end Cell;

9.1.1 Initialising Activity Variables
It is possible to send a sequence of arguments to an activity when it is instantiated in order to initialise
its state space (variables). The arguments are passed as parameters to the instantiator new. The types of
the arguments are checked in the same way as for a procedure. For example:
activity A(a, b, c: integer);
begin

…
end A;

var a: A;

…
a := new A(10, 10, 10);
…

The result of the example above is equivalent to:
activity A;

var a, b, c: integer;
begin

accept a, b, c;
end A;

9.1.2 Activity Termination
Once an activity has been spawned there is no facility within the language to pre-emptively terminate
it, i.e. there is no concept of ‘assassination’. It is possible that some Zonnon implementations might
offer such a facility in the form of an additional ‘kill’ procedure in the runtime system [Compiler].

Note that an object containing activities may only terminate when there are no longer any references to
it, and when all of its activities have terminated. An activity terminates after the execution of the
statement immediately preceding the end of its body.

Zonnon Language Report: Release v04 r00 b00 Saved on 28 July 2009 30

9.2 Protocol Controlled Activities
An activity can spawn another activity in the same, or a different, object or module. When this occurs
the two activities can share a formal protocol which governs the dialog of interaction between them
defined in the form of an EBNF syntax. Of course it is possible for a protocol to be null, in which case
there is no interaction specified. See also 5.3.4 Protocol types. A complete example of the use of
activities is presented in section 16 .

Such activities are created and interact in the following way:

1. A protocol type is declared which defines the valid sequence of interaction between the
activities in the form of an EBNF syntax.

2. The first activity is instantiated within a module or object, it is referred to as the client.
3. The client activity then instantiates the second activity in a module or object, it is referred to

as the server. The client and the server both implement (share) the same protocol. The client
activity is always anonymous from the server’s viewpoint. The client references its server
using an variable of the activity’s type.

4. The two activities can now interact according to the EBNF syntax defined in the protocol they
share. This is achieved by using the client sending and receiving parameters to and from its
server; in turn the server accepts parameters from its client and returns parameters back to it.

5. The is operator can be used to discriminate between different types of syntactic tokens (see
6.2.4). The allowed types are integer, real, string, keywords (i.e. the enumerated tokens of the
protocol) and special characters.

6. The dialog is only ended when either of the two activities has terminated; either by reaching
the end of its begin … end body, or terminating due to trap to the system (catastrophic error).

A protocol controlled activity supports explicit synchronisation and communication with its client
activity; it may be declared in the scope of a different object or module. An activity may spawn another
activity in either the same or another object or module hence gaining access to its scope via parameters
passed according to the protocol. Here is an example of a simple protocol and a server activity:
protocol P = (a, b, c, P = a | b | c);
activity A implements P;

var p: P;
begin
 accept p; (* receives the token sent by the client activity *)
 if p = P.a then
 (* token a *)
 elsif p = P.b then
 (* token b *)
 else
 (* token c *)
 end
end A;

A complete example of the use of activities is presented in section 16 .

9.2.1 Sending and Receiving Tokens with an Activity
An activity can be created instantiated from a module, object, procedure or activity body. It is possible
to send tokens (parameters) to it and receive tokens back from it. Note that the compiler does not check
the types of the parameters. The format for sending tokens resembles a procedure call. The send
operation is non-blocking, that is, execution continues immediately with the next statement.

Example:
activity A; (* declaration of the activity type *)
begin

 …
end A;
…
(* Now in the module, object or activity that is going to create the instance for the client … *)
var a: A; s: string;
begin

a := new A; (* Create the instance of the activity and store its reference in a variable *)
a (1024); (* Send an integer constant via the activity reference *)
a (“Hello”); (* Send a string constant *)

Zonnon Language Report: Release v04 r00 b00 Saved on 28 July 2009 31

a (“My name is ”, s, 17); (* Send a string constant, a reference to the string object and an integer constant *)
end;

Tokens that are then returned by the activity are received by the original sender. The received token
values are implicitly converted to destination variable type if necessary. If a type conversion error
occurs the standard system exception conversion will be thrown, see 7.10.1. The format for receiving
tokens resembles a function procedure call. The receive operation is blocking, that is, execution only
continues with the next statement when all the tokens involved in the statement have been received.

Example:

(* Now following on from the previous example and looking from the original sender’s viewpoint … *)
var a: A; s, b: string; i, d: integer; c: object;

…
(* receive a stream of tokens from the activity … *)
i := a (); (* receive token and convert to integer *)
s := a (); (* receive token and convert to a string *)
b, c, d := a (); (* receive three tokens: the literal string, a reference to a string and an integer *)
...

It is also possible to combine the sending and receiving of tokens into a single statement. Note that in
this case the statement effectively blocks the sender until all the expected returned tokens have arrived
and have been assigned to their variables.

Example:
activity A; (* declaration of the activity type *)
begin

 …
end A;

(* Now in the module, object or activity that is going to create the instance for the client … *)
var a: A; s, b: string; i, d: integer; c: object;

begin

a := new A; (* Create the instance of the activity and store its reference in a variable *)
…
(* now send and receive tokens *)
i := a (“Hello”); (* send “Hello” and receive integer token in response *)
s := a (); (* receive token and convert to a string *)
b, c, d := a (1, “a”); (* send constants 1 and “a” then receive three tokens:

 the literal string, a reference to a string and an integer *)

9.2.2 Sending and Receiving Tokens in Server Activities
When a client activity creates a server activity it can then interact with it using tokens according to the
EBNF dialog defined in its protocol (type). So within the server activity the accept statement is used to
receive tokens and the return statement is used to send tokens back to the client activity. Accepted
tokens undergo any necessary type conversion implicitly. The accept statement is blocking and the
return statement is non-blocking.

Examples:
activity A; (* instantiated in the role of a server *)

var s: string; b,c,d: integer;
begin
 (* an activity receieving tokens from its client *)

accept s; (* accept a token and if necessary convert to string *)
accept b, c, d; (* accept three tokens and if necessary convert to integer *)
…

end A;

and for a server activity returning tokens to its client:
activity A;

var s: string; b,c,d: integer;
begin

return s; (* Send a string *)
return b, c, d; (* Send three integers *)

end A;

Zonnon Language Report: Release v04 r00 b00 Saved on 28 July 2009 32

9.2.3 Using is operator to check token type
When receiving or accepting tokens the type of the token can be checked at run time by using the is
operator. This can help to differentiate between types and also to avoid exceptions due to type
mismatches. For example:

protocol P = (START_TEXT, MODIFIER1, MODIFIER2, END_TEXT,
 P = START_TEXT { string | MODIFIER1 | MODIFIER2 } END_TEXT);

activity A implements P; (* the client and server activities both are associated with this type P *)
 var request: object;

 procedure processCmd(cmd: P);
 end processCmd;

 procedure addTextLine(s: string);
 end addTextLine;

begin (* transfer text made up of strings and modifiers, see the protocol type for its structure (syntax) *)
 repeat
 accept request; (* receive the token *)
 if request is P then (* check if it is a protocol token from the enumeration in type P *)
 processCmd(P(request))
 else (* the token must of type string *)
 addTextLine(string(request))
 end
 until (request is P) & (request = P.END_TEXT);
end A;

9.3 Barrier Controlled Activities
An arbitrary number of child ‘activities’ may be created from within the ‘parent’ scope of an object,
module, procedure, activity or do…end body in combination with the modifier {barrier}. At the
statement level this also applies to any statement sequence marked with a leading barrier modifier.
Object (or module) bodies always act as the root of a hierarchy. The end of the ‘parent’ scope by
definition takes the role an execution ‘barrier’ that must not be crossed until all ‘child’ activities have
terminated.

An independent activity needs to be declared as an (arbitrarily nested) procedure with no result that has
the advantage of enabling access to data within the static link of the procedure-activation stack. An
activity of this type may then be instantiated by any parent within its scope of visibility by using the
new operator followed by the procedure name and a matching list of actual parameters.

Example 1: Declaration and instantiation of independent activities within object scope
object X;
 var x: array N of X; s0, s1: S;
 activity Q (s: S);
 var t: T;
 begin ... (* has access to x *)
 end Q;
begin { barrier } ...
 new Q(s0); new Q(s1);
 ...
end X; (* acts as barrier *)

Example 2: Independent activities within procedural scope
procedure P (...);
 var x: array N of X; s0, s1: S;
 activity Q (s: S); (* local declaration *)
 var ...
 begin ... (* activity body will have access to x *)
 end Q;
begin { barrier } ...
 new Q(s0); new Q(s1); (* instantiate two activities in procedure body *)
 ...
end P; (* acts as barrier: both activies must terminate before it is crossed *)

Example 3: Independent activities within wrapping barrier
 do { barrier }

Zonnon Language Report: Release v04 r00 b00 Saved on 28 July 2009 33

 get (s0, s1); (* Snapshot values from enclosing scope *)
 while ... do (* instantiate pairs of activities *)
 new Q(s0); new Q(s1);
 get (s0, s1)
 end

 end (* acts as barrier: all activies must terminate before it is crossed *)

Example 4: Independent activities within inner barrier
 get (s0, s1); (* Snapshot values from enclosing scope *)

 repeat
 do { barrier }
 new Q(s0); new Q(s1);
 get (s0, s1)
 end (* acts as barrier, all activies must terminate before it is crossed *)
 until …

9.4 Protected Objects and Modules
In concurrent systems there is the possibility for multiple activities to have read and write access to an
object or module’s state space. This access sometime needs to be managed to avoid data corruption e.g.
an activity overwriting data written by another activity before the consumer of the data has had chance
to read it. Zonnon provides two levels of access protection: the object level and at the method level.

9.4.1 Object-level Protection

Objects (and modules) may optionally specify a {protected} modifier. This declares a hidden shareable
lock associated with the instance of each object. For an activity to access the object, i.e. call a method,
as a precondition it must ‘own’ the object-level lock. This can only be achieved by entering a protected
object when it is unoccupied by any other activities. On acquiring the lock the activity can use the await
statement to wait for any condition local to the object, in which case the following sequence happens:

1. The system ‘suspends’ the execution of the activity and releases the lock. This allows
other activities a chance to establish their own await conditions.

2. The system monitors the awaited condition or our activity.

When the awaited condition is established and the lock is releasable the system resumes the execution
of the waiting activity.

9.4.2 Method-level Protection

A finer granularity of protection is also available at the method level. Any method within a protected
object can be ‘shared’ by marking its declaration with the {shared} modifier at the beginning of the
method body. When running a block of shared statements within an object only a ‘share’ of the total
lock can be owned by the accessing activity, and any number of activities may get their own share.
However, statements within such a shared statement sequence must not modify (write to) the object’s
data i.e. method-level shared accesses must be ‘read-only’. This provides for efficient access to read
object data by many activities concurrently without the overhead of each on in turn having to own the
object-level lock.

10 Mathematical extensions
Mathematical extensions of Zonnon let use arrays in a more convenient way for writing applications
where multidimensional algebra is used.

10.1 Data structures
For general information about arrays see 5.3.5.
Arrays to be used in mathematical extensions should be defined with special {math} modifier.

ArrayType = array "{" math "}" Length { "," Length } of Type.

10.1.1 Expression arrays
Expression array has the following structure:

ExpressionArray = "[" ArrayFactor "]".
ArrayFactor = ExpressionArray { "," ExpressionArray }

Zonnon Language Report: Release v04 r00 b00 Saved on 28 July 2009 34

 | Expression { "," Expression }.

An expression array may be used for creating arrays or assigning values to it. An expression array is
written as a comma-separated list of expressions, enclosed by braces "[" and "]". The rank of the
constructed array will be equal to the number of enclosed braces. The n-th expression specifies the
value of the n-1-th array component.

Example:

var
 a : array {math} 2, 3 of integer;
begin
 a := [[1, 2, 3], [4, 5, 6]];
 (* it is equal to:

 a[0, 0] := 1;
 a[0, 1] := 2;
 a[0, 2] := 3;
 a[1, 0] := 4;
 a[1, 1] := 5;
 a[1, 2] := 6;

 *)
 …

10.2 Indices
If a is a n-dimensional array ,then a subset of its elements can be defined as

a[index0 , … , indexn-1].

In this context indexi (which is responsible for a subset in i-th dimension) can be either a simple index,
a range, a numerical vector1 or a boolean vector. All array accesses are checked at run-time. If array a
is dynamic, it has to be initialized, otherwise a NilReference exception will be thrown at run-time.

10.2.1 Simple indices
A simple index is an expression of integer or cardinal type which value is out of set {0, … , len(a, i) –
1}. This kind of indices is acceptable for usual arrays too and provides a single element access. An
attempt to use an index that doesn't lie in the set {0, … , len(a, i) – 1} causes an OutOfRange exception
to be thrown.

Example:

var
 b : array {math} 8,8,8 of real;
 k : real;
begin
 …
 k := b[2, 3, 1];
 …

10.2.2 Ranges
Range is a type for constants and variables which are used as indices in math arrays. The denotation for
the name of this type is range. The only allowed operation with variables of range type is assignment
of another range variable or a constant of range type.
A constant range has the following structure
 Range = [Expressions] ".." [Expression] ["by" Expression] .
 and looks like

[c]..[d] [by f] ,
where c {0, … , len(a, i) – 1}, d {0, … , len(a, i) – 1}, c ≤ d and f .
If c (in this context) is not specified and the constant range is used as an index ,then it is equal to 0; if c
is not specified and the constant range is used in the right part of an assignment statement ,then a
compile time error will occur.
If d is not specified and the constant range is used as an index ,then it is equal to the length of the
array's corresponding dimension reduced by one (or equal to len(a, i) – 1); if d is not specified and the
constant range is used in the right part of an assignment statement ,then a compile time error will occur.
If f is not specified ,then it is equal to 1. In this context c, d and f should be of integer or cardinal type.

1 Here vector denotes an one-dimensional array

Zonnon Language Report: Release v04 r00 b00 Saved on 28 July 2009 35

Expression "c..d by f" stands for an ordered set {c + i * f : i ; 0 ≤ i * f ≤ d – c}. An attempt to use a
range with bounds that don't lie in the set {0, … , len(a, i) – 1} causes an OutOfRange exception to be
thrown.

Example:

module M;
var
 a : array {math} 11, 10, 9, 8, 12 of integer;
 b : array {math} *, *, *, *,* of integer;
 r : range;
begin
 …
 r := 1..10 by 3 ;
 b := a[.. by 2, ..3, 5.., 2..7, r];
 (*
 it is equal to:
 b := a[0..len(a,0)-1 by 2, 0..3, 5..len(a,2)-1, 2..7, 1..10 by 3];

 now
 len(b, 0) = len(a, 0)/2 + 1 = 6
 len(b, 1) = 3 + 1 = 4
 len(b, 2) = len(a, 2) - 5 = 4
 len(b, 3) = 7 - 2 + 1 = 6
 len(b, 4) = 4
 *)
end M.

Note: ranges never change the dimension of an array, even if c = d.

10.2.3 Numerical vector indices
A numerical vector index is a vector, or a one-dimensional array, of integer or cardinal type which
elements must lie in the set {0, … , len(a, i) – 1}. The index vector can be of any length, and the result
array in i-th dimension will have the same length as the index vector. The corresponding elements of
the array are selected and concatenated in the same order, as they stand in the index vector. An attempt
to use a numerical vector index with elements that don't lie in the set {0, … , len(a, i) – 1} causes an
OutOfRange exception to be thrown.

Example:

module M;
 type Vector = array {math} * of real ;
var
 a, b : Vector;
 a_ind : array {math} * of integer;
begin
 a := new Vector(8);
 …
 a_ind := [5, 7, 0, 5];
 b := a[a_ind];
 (*
 it is equal to:
 b := new Vector(4);
 b[0]:= a[5];
 b[1] := a[0];
 b[2] := a[7];
 b[3] := a[5];
 *)
end M.

Note: numerical vector indices never change the dimension of an array, even if the length of a vector
index is one or zero.

10.2.4 Boolean vector indices
A boolean vector, or a one-dimensional array, index is a vector of boolean type which must be of the
length of i-th dimension of the array, from which elements are selected (or equal to len(a, i)). The
length of the result vector will be the same as the number of true elements in the boolean vector.
Values corresponding to true in the index boolean vector are selected and those corresponding to false

Zonnon Language Report: Release v04 r00 b00 Saved on 28 July 2009 36

are omitted. An attempt to use a boolean vector index not of the length len(a, i) causes an
IncompatibleSizes exception to be thrown.

Example:

module M;
 type Vector = array {math} * of real;
var
 a, b : Vector;
 a_ind : array {math} * of boolean;
begin
 a := new Vector(5);
 …
 a_ind := [true, false, false, true, true];
 b := a[a_ind];
 (*
 it is equal to:
 b := new Vector(3);
 b[0]:= a[0];
 b[1] := a[3];
 b[2] := a[4];
 *)
end M.

10.3 Operators
In this section array of number denotes an array of integer, cardinal or real type, scalar denotes a
variable or a constant of integer, cardinal or real type.

General rule for the type of the resulting array elements is that it is equal to the type of the
corresponding operation with scalars.

10.3.1 Common operators

10.3.1.1 Unary operators

Operator Operand Result Meaning
+ – array of number array of number element-wise operation
~ array of boolean array of boolean element-wise negation
<A>, where <A> denotes a type array of number array of number of

type <A>
element-wise type conversion

Example:
module M;
var
 a : array {math} * of integer;
 b, b_neg : array {math} * of real;
begin
 b := [-1.3, 4.2, -7., 9.9];
 b_neg := -b; (* b_neg = [1.3, -4.2, 7., -9.9] *)
 a := integer(b); (* a = [-1, 4, -7, 9] *)
end M.

10.3.1.2 Binary operators

Operator First operand Second operand Result Meaning
:= array of number array of number - element-wise assignment
:= array of number expression array - element-wise assignment
+ – * / div mod array of number scalar array of number element-wise operation
+ – * / div mod scalar array of number array of number element-wise operation
+ – .* ./ div mod array of number array of number array of number element-wise operation
+* array of number array of number scalar (pseudo)scalar product
.= .# .< .<= .> .>= array of number scalar array of boolean element-wise comparison
.= .# .< .<= .> .>= scalar array of numer array of boolean element-wise comparison
.= .# .< .<= .> .>= array of number array of number array of boolean element-wise comparison
= # < <= > >= array of number scalar boolean generalized comparison
= # < <= > >= scalar array of numer boolean generalized comparison
= # < <= > >= array of number array of number boolean generalized comparison

Zonnon Language Report: Release v04 r00 b00 Saved on 28 July 2009 37

If in an assignment statement one array is defined with {math} modifier and another one without, the
assignment will be implemented as element-wise copy. If both arrays were defined without {math}
modifier, the assignment will be implemented as reference copy.

Note: a +* b is the same as sum(a .* b), but the first operation doesn't require allocation of an extra
array. For one-dimensional arrays "+*" operation is the same as "*".

Example:

module M;
var
 a, b, c : array {math} * of integer;
 b, b_neg : array {math} * of real;
 k : integer;
 vector_bool : array {math} * of boolean;
 var_bool : boolean;
begin
 a := [5, -3];
 b := [2, 1];

 k := 3;
 c := a + k; (* c = [8, 0] *)
 c := a .* b; (* c = [10, -3] *)
 vector_bool := a .< b; (* vector_bool = [false, true] *)
 vector_bool := a .< 7; (* vector_bool = [true, true] *)
 var_bool := a < 7; (* var_bool = true *)
end M.

10.3.2 Matrix operators

10.3.2.1 Unary operators

Operator Operand Result Meaning
! 2d array of number 2d array of number matrix transposition

10.3.2.2 Binary operators

Operator First operand Second operand Result Meaning
* 2d array of number 2d array of number 2d array of number matrix product
* 2d array of number 1d array of number 1d array of number matrix-column product
* 1d array of number 2d array of number 1d array of number row-matrix product
* 1d array of number 1d array of number scalar row-column product (scalar

product)
/ 2d array of number 2d array of number

(square matrix)
2d array of number solving linear equations (or

matrix right division)
/ 1d array of number 2d array of number

(square matrix)
1d array of number solving linear equations (or

matrix right division)
\ 2d array of number

(square matrix)
2d array of number 2d array of number solving linear equations (or

matrix left division)
\ 2d array of number

(square matrix)
1d array of number 1d array of number solving linear equations (or

matrix left division)

Note: if the solution of the linear system is not the only one, then any solution will be found. If the
solution of the linear system doesn’t exist, then NoSLUSolution exception will be thrown.

Example:

module M;
 type Matrix = array {math} *,* of real;
var
 A, B, C, X : Matrix;
begin
 ...
 C := !A; (* C is transposed A *)
 X := B / A; (* X is the solution of X * A = B system *)
 X := A \ B; (* X is the solution of A * X = B system *)
 (*

X := B / A
is equivalent to
X := !(!A\!B)

 *)

Zonnon Language Report: Release v04 r00 b00 Saved on 28 July 2009 38

end M.

10.4 Additional functions
In this section array of number denotes an array of integer, cardinal or real type, scalar denotes a
variable or a constant of integer, cardinal or real type.

10.4.1 Common functions

Function Operand Result Meaning
abs array of number array of number element-wise absolute value
min array of number scalar minimal element in the array
max array of number scalar maximal element in the array
sum array of number scalar sum of array elements

Example:

module M;
var
 a : array {math} * of integer;
 min_a, sum_a : integer;
begin
 a := [-1, 4, -7, 9, 12];
 min_a := min(a[1.. by 2]); (* min_a = 4 *)
 sum_a := sum(a[..2]); (* sum_a = -4 *)
end M.

Function Operand 1 Operand 2 Result Meaning
find scalar 1d array 1d array of number indices where elements are equal

to scalar
Example:

module M;
var
 a, b : array {math} * of integer;
begin
 a := [4, 6, -1, 6];
 b := find(integer(6), a); (* b = [1, 3] *)
end M.

10.4.2 Functions for boolean arrays

Function Operand Result Meaning
all array of boolean boolean check whether all elements are

true
any array of boolean boolean check whether any element is

true
find 1d array of boolean 1d array of number indices where elements are true

Example:

module M;
var
 a : array {math} * of integer;
 b : array {math} * of boolean;
 q : boolean;
begin
 b := [true, false, true];
 q := all(b); (* q = false *)
 q := any(b); (* q = true *)
 a := find(b); (* a = [0, 2] *)
end M.

11 Program Units
A Zonnon program may be textually partitioned into units, each of which can be compiled separately.
The units are: the module, the definition, the implementation, and the object. It is possible to textually
nest some of these units; the rules governing this are in section 2; note that a unit declaration cannot be
nested within itself.

CompilationUnit = { ProgramUnit "." }.

Zonnon Language Report: Release v04 r00 b00 Saved on 28 July 2009 39

ProgramUnit = (Module | Definition | Implementation | Object).

Within a program the module and object program units are implementers of functionality, whereas the
definition and implementation units are implementees.

11.1 The Module
A module has a dual nature, it declares a syntactic container for logically cohesive program
declarations and it simultaneously declares an object which is managed by the system. So the module
provides the mechanism for the textual partitioning of a source program and also the dynamic loading
at execution time of a part of a program, in the form of an instantiated object.

Any number of dynamically created objects may have their lifecycles managed by a program,
however only a single instance of each module’s object may be instantiated by the system at any given
time. For this reason the module is also ideal for implementing abstract data types. Nesting of module
declarations is not allowed.

Module = module [Modifiers] ModuleName [ImplementationClause] ";"
 [ImportDeclaration]
 ModuleDeclarations
 (UnitBody | end) SimpleName.

Modifiers = "{" IdentList "}".

ModuleDeclarations = { SimpleDeclaration | NestedUnit ";" |
 ProcedureDeclaration | OperatorDeclaration
 ProtocolDeclaration | ActivityDeclaration }.

NestedUnit = (Definition | Implementation).

ImplementationClause = implements ImplementedDefinitionName { ","
 ImplementedDefinitionName }.

ImplementedDefinitionName = DefinitionName | "[" "]".

ImportDeclaration = import Import { "," Import } ";".

Import = ImportedName [as ident].

ImportedName = (ModuleName
 | DefinitionName
 | ImplementationName
 | NamespaceName
 | ObjectName).

UnitBody = begin [StatementSequence] end.

Each module has a unique name and constitutes a text that may be separately compiled as a unit.
Optionally a module may implement one or more definitions. (See section 2). In this case the distinct
facets of the object are defined separately in definition units which provide an abstract interface. A
module may optionally import elements from one or more other implementations, that is, gain access to
their scope and make possible the aggregation of their content. By using the as clause it is also possible
to rename all entities as they are imported. This can be used to avoid name clashes and/or to simplify
long external names to promote program readability.

Example:
import System.Console as S;
…
S.WriteLine('Hello'); (* equivalent to System.Console.WriteLine('Hello') *)

A module may optionally contain

• Other textual units i.e. definitions, implementations and objects
• Simple declarations of constants, types, variables, and procedures
• Operator declarations, for defining user defined operators
• Activity declarations, for defining activities within the module on instantiation

Examples:
module Small;
begin
 write ('Hello World')
end Small.

Zonnon Language Report: Release v04 r00 b00 Saved on 28 July 2009 40

module BodyMassIndex; (* calculate body mass index *)
 var height, weight, bmi: real;
begin
 write('weight in kg? '); read(weight);
 write('height in m? '); read(height);
 bmi := weight / (height * height);
 write(' body mass index is', bmi : 6: 2);
 if bmi < 19.0 then
 write('too thin')
 elsif bmi < 27.0 then
 write('OK')
 else
 write('too fat')
 end
end BodyMassIndex.

definition D; …end D.

definition E; …end E.

module M;
import D, E;
 var a: object{D, E}; (* object is one that implements both D and E *)
 …
end M.

11.2 The Object
An object type can be separately compiled and is composed of its local declarations (const, type, var,
procedures and activities) and its body. Nesting of object declarations is not allowed. An object is an
instance of such a type. When the object is instantiated using new the statements in the object body are
run on the objects’ new thread of execution. The functionality of the object can be accessed by other
modules, objects and activities by calling its method procedures. It can also be accessed by activities
external to it instantiating activities within it and then interacting with them; in this way they gain
controlled access to the objects’ scope. Access can also be achieved by the use of indexers; see 7.1.1.
A record is a special form of object which has no body.

Object = object [Modifiers] ObjectName ObjectDefinition SimpleName.

ObjectDefinition = [FormalParameters] [ImplementationClause] ";"
 [ImportDeclaration]
 { SimpleDeclaration | ProcedureDeclaration |
 ProtocolDeclaration | ActivityDeclaration }
 (UnitBody | end).

Record = record ObjectName { VariableDeclaration ";" } end SimpleName.

In order to avoid the notion of free-floating types the standalone object declaration is equivalent to the
type being declared in an anonymous module. So the declaration of the form:

object T;
…
end T.

is shorthand for:

module ;
 type T = object … end;
end .

The use of this form is restricted to the ‘topmost’ level of declarations.

Optionally an object may implement one or more definitions. (See section 2). In this case the distinct
facets of the object are defined separately in definition units which provide an abstract interface. Also
an object may import elements from a module or implementation; that is, gain access to their scope. By
using the as clause it is also possible to rename all entities as they are imported. This can be used to
avoid name clashes and/or to simplify long external names to promote readability of the programming
within the object.

Note that an object importing a definition D to make use of the implementation D must explicitly
aggregate it by importing D, see sections 10.2.3 and 10.4.

Zonnon Language Report: Release v04 r00 b00 Saved on 28 July 2009 41

11.2.1 Inheritance and Multiple Inheritance

There are two kinds of inheritance supported in Zonnon: refinement and aggregation. Refinement is the
inheritance of an interface definition whilst aggregation is the inheritance (reuse) of (fragments of) an
existing implementation. All object declarations that do not explicitly refine some other object are
deemed to refine object. Thus all objects (directly or indirectly) refine object. If an object B refines an
object A, then B is said to be ‘derived from’ A; for further details see section 10.2.3.

Multiple inheritance is characterized by the possibility to refine from multiple definitions and/or to
aggregate from multiple implementations. In Zonnon there is no ambiguity associated with multiple
inheritance, due to the use of qualified identifiers for naming (see 5.1).

11.2.2 Polymorphism

Polymorphism involves the selection of the appropriate method to invoke at execution time, depending
on the type of the variable that it is to be acted upon. There are two concepts:

1) an object of type T is required here, and

2) an object is required here that implements an interface definition D

Zonnon emphasizes the second more general concept (2 above) and goes further by allowing the
specification of multiple definitions (so called ‘facets’ of the object’s overall interface) and so in this
context polymorphism means ‘an object is required here that implements D1 and D2 and …’.

11.2.3 Activities

Activities may be declared as types within objects. They may also be instantiated within the object
itself or by another activity either within the same object or by an activity in another object. See section
9 for details of activities and objects.

11.3 The Definition
A definition defines a distinct facet of an object in terms of an abstract interface comprising field
declarations and method signatures (but not method bodies). Definitions can form a network of related
types, not just a hierarchy. The dependencies between definitions may not be cyclic.

Definition = definition [Modifiers] DefinitionName [RefinementClause] ";"
 [ImportDeclaration]
 DefinitionDeclarations
 end SimpleName.

RefinementClause = refines DefinitionName.

DefinitionDeclarations = { SimpleDeclaration
 | { ProcedureHeading “;” }
 | ProtocolDeclaration }.

A definition has a unique name and optionally refines another definition, presenting a new facet of an
object, possibly adding new fields and behavior and thus forming a specialized form of the original
definition.

It may also optionally import elements from one or more implementations, that is gain access to
their scope and make possible the literal aggregation of their content. By using the as clause it is also
possible to rename all entities as they are imported. This can be used to avoid name clashes and/or to
simplify long external names to promote readability of the programming within the object. The
modifiers public and private can be used to declare the visibility of the contents of a definition. If no
modifier is present then the default is public. The definition can contain a set of declarations of
constant, types and variables and also method procedure headings (signatures), but not the bodies of
procedures.

Examples:
definition Graphical; (* features of all graphical objects *)
 var x, y: integer; (* object’s position *)

 procedure MoveTo (newX, newY: integer);
 (* post: (x = newX) & (y = newY) *)

 procedure MoveBy (dx, dy: integer);

Zonnon Language Report: Release v04 r00 b00 Saved on 28 July 2009 42

 procedure Draw;
end Graphical.

definition Rectangle refines Graphical; (* features specific to rectangle objects *)
 var width, height: integer;

 procedure Area (): integer;
end Rectangle.

implementation Graphical; (* see example in section 10.4 *)

 …
end Graphical.

object {ref} Box implements Rectangle;
 procedure Area (): integer;
 begin
 return width * height
 end Area;
end Box.

11.4 The Implementation
An implementation defines an aggregate of field and method implementation fragments intended for re-
use when incorporated into a program via one or more object templates. An implementation has a
unique name unless it has the same name as its corresponding definition. It may optionally import
elements from one or more other implementations, that is, gain access to their scope and make possible
the aggregation of their content. By using the as clause it is also possible to rename all entities as they
are imported. This can be used to avoid name clashes and/or to simplify long external names to
promote readability of the programming within the object. Nesting of implementation declarations is
not allowed.

The modifiers public and private can be used to declare the visibility of the contents of an
implementation. If no modifier is present then the default is public.

An object implementing a definition is required to implement all of its methods unless the definition
has a corresponding implementation which is imported to the object.

Implementation = implementation [Modifiers] ImplementationName ";"
 [ImportDeclaration]
 Declarations
 (UnitBody | end) SimpleName.

UnitBody = begin [StatementSequence] end.

The implementation can contain a set of declarations of constants, types and variables and also method
procedure headings and bodies. These bodies ultimately form the concrete implementations of the
methods of objects.

Type extension, as introduced in Oberon [Oberon] can easily be emulated. If Tf is a type consisting
only of fields then a new type T can “inherit” the fields of Tf by implementing it. Examples:

implementation Graphical; (* an implementation of the definition Graphical *)
 (* X and Y are declared in the definition, see section 10.3 above *)
 procedure MoveTo (newX, newY: integer);
 begin
 x := newX; y := newY
 end MoveTo;

 procedure MoveBy (dx, dy: integer);
 begin
 x := x + dx; y := y + dy
 end MoveBy;

end Graphical.

Before an object is instantiated each implementation that it implements is itself aggregated as a whole
and initialized. Furthermore it is possible for one implementation unit to implement part of another
implementation unit. This makes it possible to encapsulate program fragments a hierarchy of
implementations, for instance to enable their reuse.

Zonnon Language Report: Release v04 r00 b00 Saved on 28 July 2009 43

12 Reflection
It is sometimes desirable to access information about the constructs and their attributes (e.g. modifiers)
of a Zonnon source program. To make this possible the compiler can produce an XML definition of the
salient features of each separately compiled item of source text. This can later be accessed by a run-
time program using the predefined procedure getAttribute. The construct parameter is the name of any
Zonnon entity, including program units, types, constants, variables, objects, procedures, parameters,
blocks and operators.

The attribute values may be accessed using two forms of getAttribute:
getAttribute(construct, var string);

or
string := getAttribute (construct);

The information is returned in a single string, possibly containing several attribute values.

12.1 XML Schema
The following list defines the XML schema used to describe the information reflected from the
program with typical examples provided in each case:

12.1.1 Access Rights
<access>public</access>
<access>private</access>

12.1.2 Objects
<object>ref</object>
<object>value</object>

12.1.3 Procedure Parameters (parameter passing mode):
<parameter>var</parameter>
<parameter>value</parameter>

12.1.4 Procedure and Variable Immutability:
<immutable>open</immutable>
<immutable>sealed</immutable>

12.1.5 Operator Priority
<priority>3</priority>

12.1.6 Blocks and Procedure Bodies
<behavior>passive</behavior> //neither locked nor concurrent
<behavior>locked</behavior>
<behavior>concurrent</behavior>

12.1.7 Type, Variable and Constant Widths
<width>64</width>

12.1.8 Enumeration Cardinality
<ordinal>7</ordinal>

12.2 Example: program reflection and information
When the following program runs

definition d;
 procedure p1 (var x: integer {32});
 procedure p2 { sealed };
 var v: integer {64};
 type T = (one, two, three);
end d.

Zonnon Language Report: Release v04 r00 b00 Saved on 28 July 2009 44

object o implements d;
 procedure p1 (var x: integer {32}) implements d.p1;
 var attrs1, attrs2, attrs3, attrs4, attrs5, attrs6: string;
 begin { locked }
 attrs1 := getAttribute(d);
 attrs2 := getAttribute(d.v);
 attrs3 := getAttribute(p1.x);
 attrs4 := getAttribute(d.T);
 attrs5 := getAttribute(p1);
 attrs6 := getAttribute(d.p2);
 end p1;
begin
end o.

it reveals its form via the reflection information as follows:
attrs1(d) contains:
 "<attributes> <access>public</access> </attributes>"

attrs2(d.v) contains:
"<attributes> <access>public</access> <implement>open</implement>
<width>64</width> </attributes>"

attrs3(p1.x) contains:
 "<attributes> <parameter>var</parameter> <width>32</width> </attributes>"

attrs4(d.T) contains:

 "<attributes> <access>public</access> <width>32</width> <ordinal>3</ordinal>
 </attributes>"

attrs5(p1) contains:
 "<attributes> <access>public</access> <implement>sealed</implement>
 <behavior>locked</behavior> </attributes>"

attrs6(d.p2) contains:
 "<attributes> <access>public</access> <implement>sealed</implement>
 <behavior>passive</behavior> </attributes>"

13 Definition of Terminology

13.1 Numeric Types
The numeric types are:

• Integer types integer or integer{width}

• Cardinal types cardinal or cardinal{width}

• Real types real or real{width}

13.2 Same Types
Two variables a and b with types Ta and Tb are of the same type if

• Ta and Tb are both denoted by the same type identifier, or

• Ta is declared to equal Tb in a type declaration of the form Ta = Tb, or

• a and b appear in the same identifier list in a variable, object field, or formal parameter
declaration and are not open arrays.

13.3 Equal Types
Two types Ta and Tb are equal if

• Ta and Tb are the same type, or
• Ta and Tb are open array types with equal element types, or
• Ta and Tb are procedure types whose formal parameter lists match.

Zonnon Language Report: Release v04 r00 b00 Saved on 28 July 2009 45

13.4 Assignment Compatible
An expression e of type Te is assignment compatible with a variable v of type Tv if one of the
following conditions hold:

• Te and Tv are the same type;
• Within each of the type families

integer, cardinal, real, set, char
an expression of type Te may be assigned to a variable v whose type Tv is large enough
(defined by its width) to hold the set of values of type Te;

• Tv is a procedure type and e is nil;
• Tv is a procedure type and e is the name of a procedure whose formal parameters match

the signature of Tv

13.5 Array Compatible
An actual parameter a of type Ta is array compatible with a formal parameter f of type Tf if

• Tf and Ta are the same type, or
• Tf is an open array, Ta is any array, and their element types are array compatible

13.6 Compatible for Expressions and Operator Overloading
For a given operator, the types of its operands are expression compatible if they conform to the
following table (which shows also the result type of the expression), for example: op1 > op2. The table
also implicitly defines the sets of operand combinations that are supported for operator overloading.

Operator First operand (op1) Second operand (op2) Result type
+ – * ** integer{m} integer{n} max of integer{m} and integer{n}
+ – * ** cardinal{m} cardinal{n} max of cardinal{m} and

cardinal{n}
+ – * ** real{m} real{n} max of real{m} and real{n}
/ real{m} real{n} pre: op2 # 0 max of real{m} and real{n}
+ – * set{m} set{n} max of set{m} and set{n}
div mod integer{m} integer{n} pre: op2 # 0 max of integer{m} and integer{n}
div mod cardinal{m} cardinal{m} max of cardinal{m} and

cardinal{n}
or & ~ boolean boolean boolean
= # < <= > >= integer{m} integer{n} boolean
= # < <= > >= cardinal{m} cardinal{n} boolean
= # < <= > >= real{m} real{n} boolean
= # < <= > >= enumeration T enumeration T boolean
= # < <= > >= char char boolean
= # < <= > >= character array, character array boolean
= # < <= > >= string string boolean
= # boolean boolean boolean
= # set set boolean
= # procedure type T procedure type T boolean
= # nil nil boolean
in integer set boolean
implements object definition boolean
is object object type boolean

13.7 Matching Formal Parameter Lists
Two formal parameter lists match if

• they have the same number of parameters, and
• they have either the same function result type or none, and
• parameters at corresponding positions have equal types, and
• parameters at corresponding positions are both either value or variable parameters.

Zonnon Language Report: Release v04 r00 b00 Saved on 28 July 2009 46

14 Predefined Procedures
The following table lists the predefined procedures. Some are generic procedures, i.e. they apply to
several types of operands. Within the specifications v stands for a variable, x and n for expressions, and
T for a type. The names of the predefined procedures can also be written entirely in upper-case letters.

Name Argument(s) type(s) Result type Purpose
abs(x) integer, cardinal or real type of x absolute value of x
assert(b) b: boolean none if ~b terminate
assert(b, n) b: boolean;

n: integer or cardinal
none if ~b terminate, report n to environment

cap(x) x: char char corresponding capital letter
precondition: x is a letter

copy(x, v) x: string; v: character array none v := x
copy(v, x) x: string; v: character array none x := v
copyvalue(v) v: ref object value object dereference an object
dec(v) v: integer, cardinal or

enumeration type
none v := v – 1

dec(v, n) v: integer, cardinal or
enumeration type
n: integer or cardinal type

none v := v – n

excl(v, x) v: set;
x: integer or cardinal type

none v := v – {x}

halt(n) n: integer or cardinal const none terminate program execution
inc(v) v: integer, cardinal or

enumeration
none v := v + 1

inc(v, n) v: integer, cardinal or
enumeration
n: integer or cardinal type

none v := v + n

incl(v, x) v: set;
x: integer or cardinal type

none v := v + {x}

len(v, n) v:array;
n: integer or cardinal const

integer length of v in dimension n
(first dimension = 0)

len(v) v: array integer equivalent to len(v, 0)
len(v) v: string integer number of characters in string v (see 5.3.6)
low(x) x: char char corresponding lower-case letter

precondition: x is a letter
max(T) integer integer maximum value of type integer{w}
max(T) cardinal cardinal maximum value of type cardinal{w}
max(T) enumeration enumeration maximum value of the enumeration
max(T) char{w} integer maximum character
max(T) real{w} real maximum value of type real{w}
max(T) set{w} integer maximum element of a set{w}
min(T) integer integer mininmum value of type integer{w}
min(T) enumeration enumeration minimum value of the enumeration
min(T) char{w} integer minimum character
min(T) real{w} real minimum value of type real{w}
min(T) set{w} integer 0
odd(x) x: integer boolean x mod 2 = 1
pred(x) x: integer integer x – 1, pre: x # min(integer)
pred(x) x: enumeration type of x predecessor enumeration value,

pre: x # min(enumeration)
pred(x) x: char char predecessor char, pre: x # min(char)
reason none string returns system information on current

exception
size(T) any type integer number of bytes required by T
succ(x) x: integer or cardinal integer x + 1, pre: x # max(integer)
succ(x) x: enumeration type of x successor enumeration value,

pre: x # max(enumeration)
succ(x) x: char char successor char, pre: x not max(char)

In assert(x, n) and halt(n), the interpretation of n is implementation specific. (See [Compiler]).

15 Input and Output Procedures
The language includes built-in features for simple textual input and output. Conceptually, reading and
writing corresponds to receiving and sending tokens from and to the predefined activities standard
input and standard output respectively.

For convenience, predefined procedures in a similar style to Pascal are provided for reading and
writing text. The procedures for inputting text are read and readln and for outputting are write and

Zonnon Language Report: Release v04 r00 b00 Saved on 28 July 2009 47

writeln. All input and output is to texts which are implicitly assumed to be represented as lines of
characters delimited by end of line markers.

15.1 Parameters and special syntax
The procedures are used with a non-standard syntax for their parameter lists. This allows for a variable
number of parameters which may be of various data types. Parameters of type char require no data type
conversion, however for other types such as integer, real, etc the data transfer includes an implicit data
type conversion.

15.2 Input Procedures

15.2.1 The read procedure

The form of the read procedure is
read (v1, …, vn)

It may have one or more parameters, each of which is a value of some basic data type. If v is a value of
type char then read(v) transfers the next character from the input text to v. If v is a value of type
integer, cardinal or real then read(v) implies the reading of a sequence of characters from the input
text and assignment of that number to v. Preceding blanks and line markers are skipped and discarded.

15.2.2 The readln procedure

The form of the readln procedure is
readln(v1, …, vn)

readln has the same functionality as read except that after reading vn all remaining characters on the
line are skipped up to and including the next end of line marker.

15.3 Output Procedures

15.3.1 The write procedure
The form of the write procedure is

write (p1, …, pn)

It may have one or more parameters, each of which has the form
e : e:m or e:m:n

Where e represents the value to be output and m and n are field-width specifiers. If the value of e
requires less than m characters for its representation then blanks (spaces) are output to ensure that a
total of exactly m characters are written. If m is omitted an implementation-defined default value will
be assumed. The form e:m:n is only applicable to numbers of type real. (See below).

The write procedure parameters can be of type char, string, boolean, integer, cardinal and real.
• If e is of type char then write (e : m) writes out m – 1 spaces followed by the character

contained in e. If m is omitted then only the character is written.
• If e is of type string then write (e : m) writes the characters of the string, preceded by blanks to

ensure a total field width of m.
• If e is of type boolean then either the word true or false is written, preceded by blanks to

ensure a total field width of m.
• If e is of type integer or cardinal then the decimal representation of the number e will be

written, preceded by blanks to ensure a total width of m.
• If e is of type real then the decimal representation of the number e will be written, preceded

by blanks to ensure a total width of m. If the parameter n is missing a floating point
representation consisting of a coefficient and a scale factor will be written. If n is present then
a fixed-point representation with n digits after the decimal point is provided.

15.3.2 The writeln procedure
The form of the writeln procedure is:

writeln (v1, …, vn)

Zonnon Language Report: Release v04 r00 b00 Saved on 28 July 2009 48

writeln has the same functionality as write except that after writing vn an end of line marker is written.

15.3.3 Default values of widths in write and writeln

The default field width for write and writeln procedure parameters depends on the type of the
parameter, the default widths are:

• char default field width 1
• string default field width is the length of the string
• boolean default field width is 6
• integer default field width is 20
• cardinal default field width is 20
• real default field width is 20

16 Example Module Strings
This is an example of a library module which builds on the minimal string features built into Zonnon.
See section 5.3.6. In this example ‘zonnon’ is the namespace, the standard implementation of Strings is
specified by the definition zonnon.Strings and its new implementation is implemented in the module
zonnon.NativeStrings .

16.1 Zonnon Strings definition

definition {public} zonnon.Strings;
 (*The definition of standard Zonnon strings *)

 (* length: return the length of the given string this *)
 procedure length (this : string) : integer;

 (* substring: returns the substring of the given string this from position start and of length count *)
 procedure substring (this : string; start, count : integer) : string;

 (* insert: returns the string with the whole string this inserted into the string s starting at position start *)
 procedure insert (this : string; start : integer; s : string) : string;

 (* remove: returns the string with count characters removed from the string this at position start *)
 procedure remove (this : string; start, count : integer) : string;

 (* replace: returns the string with with all fromc characters replaced by toc characters in string this *)
 procedure replace (this : string; fromc, toc : char) : string;

 (* startsWith: returns true is the string this is the initial substring of string s , otherwise false *)
 procedure startsWith (this : string; s : string) : boolean;

 (* endsWith: returns true is the string this is the final substring of string s , otherwise false *)
 procedure endsWith (this : string; s : string) : boolean;

 (* indexOf: returns the first located position of character c in string this *)
 procedure indexOf (this : string; c : char) : integer;

 (* indexOf: returns the last located position of character c in string this *)
 procedure lastIndexOf (this : string; c : char) : integer;

 (* toUpper: returns the string of string this with all characters converted to upper case *)
 procedure toUpper (this : string) : string;

 (* toLower: returns the string of string this with all characters converted to lower case *)
 procedure toLower (this : string) : string;

end Strings.

Zonnon Language Report: Release v04 r00 b00 Saved on 28 July 2009 49

16.2 Zonnon Strings implementation by native Zonnon character arrays

(*The implementation of standard Zonnon strings definition. Module NativeStrings *)
(* implements standard Zonnon strings definition by character arrays of Zonnon language *)
(* VR October 2005 *)

module {public} zonnon.NativeStrings implements zonnon.Strings;

 type {private} CharArray = array * of char;

 (* length: return the length of the given string this *)
 procedure {public} length(this : string) : integer implements zonnon.Strings.length;
 begin
 return len(this)
 end len;

 (* substring: returns the substring of the given string this from position start and of length count *)
 procedure {public} substring(this : string; start, count : integer) : string implements zonnon.Strings.substring;
 var k : integer;
 result : string;
 source, target : CharArray;
 begin
 source := new CharArray(len(this));
 target := new CharArray(count);

 copy(this, source);
 for k := 0 to count-1 do
 target[k] := source[start + k]
 end;
 copy(target, result);
 return result
 end substring;

(* insert: returns the string with the whole string this inserted into the string s starting at position start *)
procedure {public} insert(this : string; start : integer; inserted : string) : string implements zonnon.Strings.insert;
 var k, i : integer;
 result : string;
 source, target : CharArray;
 sourceL, insertL : integer;
begin
 sourceL := len(this);
 insertL := len(inserted);
 source := new CharArray(sourceL);
 target := new CharArray(sourceL + insertL);
 copy(this, source);
 i := 0;
 for k := 0 to start-1 do target[i] := source[k]; inc(i) end;
 for k := 0 to insertL-1 do target[i] := inserted[k]; inc(i) end;
 for k := start to sourceL-1 do target[i] := source[k]; inc(i) end;
 copy(target, result);
 return result
end insert;

(* remove: returns the string with count characters removed from the string this at position start *)
procedure {public} remove(this : string; start, count : integer) : string implements zonnon.Strings.remove;
var result : string;
 source, target : CharArray;
 k, si, ti, N, N1, N2 : integer;
begin
 N := len(this);
 source := new CharArray(N);
 target := new CharArray(N - count);
 copy(this, source);
 N1 := start;
 N2 := N - N1 - count;
 si := 0; ti := 0;
 for k := 1 to N1 do target[ti] := source[si]; inc(si); inc(ti)
 end;
 inc(si, count);
 for k := 1 to N2 do target[ti] := source[si]; inc(si); inc(ti)
 end;
 copy(target, result);
 return result
end remove;

(* replace: returns the string with with all fromc characters replaced by toc characters in string this *)

Zonnon Language Report: Release v04 r00 b00 Saved on 28 July 2009 50

procedure {public} replace(this : string; froms, tos : char) : string implements zonnon.Strings.replace;
 var k, n : integer; result : string;
 source, target : CharArray;
begin
 n := len(this);
 source := new CharArray(n);
 target := new CharArray(n);
 copy(this, source);
 for k := 0 to n-1 do
 if source[k] = froms
 then target[k] := tos
 else target[k] := source[k]
 end;
 end;
 copy(target, result);
 return result
end replace;

(* toUpper: returns the string of string this with all characters converted to upper case *)
procedure {public} toUpper(this : string) : string implements zonnon.Strings.toUpper;
 var c : char;
 ia, i, iz, k, n : integer;
 result : string;
 source, target : CharArray;
begin
 n := len(this);
 source := new CharArray(n);
 target := new CharArray(n);
 ia := integer('a');
 iz := integer('z');
 copy(this, source);
 for k := 0 to n-1 do
 c := source[k];
 i := integer(c);
 if (i < ia) or (iz < i)
 then target[k] := c
 else target[k] := char(i-32)
 end
 end;
 copy(target, result);
 return result
end toUpper;

(* toLower: returns the string of string this with all characters converted to lower case *)
procedure {public} toLower(this : string) : string implements zonnon.Strings.toLower;
 var c : char;
 iA, i, iZ, k, n : integer;
 result : string;
 source, target : CharArray;
begin
 n := len(this);
 source := new CharArray(n);
 target := new CharArray(n);
 iA := integer('A');
 iZ := integer('Z');
 copy(this, source);
 for k := 0 to n-1 do
 c := source[k];
 i := integer(c);
 if (i < iA) or (iZ < i)
 then target[k] := c
 else target[k] := char(i+32)
 end
 end;
 copy(target, result);
 return result
end toLower;

(* startsWith: returns true is the string this is the initial substring of string s , otherwise false *)
procedure {public} startsWith(this : string; s : string) : boolean implements zonnon.Strings.startsWith;
 var k, n : integer;
begin
 n := len(s);
 if len(this) < n then return false
 end;

Zonnon Language Report: Release v04 r00 b00 Saved on 28 July 2009 51

 for k := 0 to n-1 do
if s[k] # this[k] then return false
end

 end;

 return true
end startsWith;

(* endsWith: returns true is the string this is the final substring of string s , otherwise false *)
procedure {public} endsWith(this : string; s : string) : boolean implements zonnon.Strings.endsWith;
 var k, n, start : integer;
begin
 n := len(s);
 start := len(this) - n;
 if start < 0 then return false end;
 for k := 0 to n-1 do
 if s[k] # this[start + k] then return false
 end
 end;
 return true
end endsWith;

(* indexOf: returns the first located position of character c in string this *)
procedure {public} indexOf(this : string; c : char) : integer implements zonnon.Strings.indexOf;
 var k, n : integer;
begin
 n := len(this)-1;
 for k := 0 to n do

if this[k] = c then return k
end

 end;
 return -1
end indexOf;

(* indexOf: returns the last located position of character c in string this *)
procedure {public} lastIndexOf(this : string; c : char) : integer implements zonnon.Strings.lastIndexOf;
 var k, n : integer;
begin
 n := len(this)-1;
 for k := 0 to n do

 if this[n-k] = c then return n-k
end

 end;
 return -1
end indexOf;

end (* of Module *) NativeStrings .

Zonnon Language Report: Release v04 r00 b00 Saved on 28 July 2009 52

17 Example of Protocol Controlled Activities and Dialog
Here is a longer example illustrating how a protocol can be used to control the dialogue between
activities. Within the EBNF protocol specifications the communication of an item from the server to
the client is prefixed by a ‘?’. The example implements the well known Simple Mail Transmission
Protocol SMTP used for email delivery.

definition {public} MailProtocols;

(* This provides the definition of the SMTP protocol to control the interaction between the activities*)
protocol SMTP = ((* defines the tokens used in the EBNF of the dialog *)
 SMTP_SERVER_READY, SERVICE_NOT_AVAILABLE, HELO,
 OK, MAIL_FROM, RCPT_TO,
 RCPT_REJECTED, DATA, START_MAIL_INPUT,
 END, QUIT, BYE,
 msg_body = DATA ?START_MAIL_INPUT { string } END ?OK,
 session = HELO string ?OK {mail_from rcpt_to {rcpt_to} msg_body},
 se_end = QUIT ?BYE,
 mail_from = MAIL_FROM string ?OK,
 rcpt_to = RCPT_TO string (?OK | ?RCPT_REJECTED

 SMPT = ?SMTP_SEVER_READY [session] se_end | ?SERVICE_NOT_AVAILABLE,);
end MailProtcols.

(* SMTP Mail Server activity which implements the server side of the protocol *)
object MailServer implements MailProtocols;
 activity SendMail implements MailProtocols.SMTP; (* associates the activity with the protocol type *)
 var request: SMTP; any_request: object;
 host, mfrom, mto, mtextline: string;
 begin
 return SMTP.SMTP_SERVER_READY;
 accept request;
 if request = SMTP.HELO then (* If not HELO then request is QUIT *)
 accept host;
 return OK; (* Confirm that client is accepted *)
 (* Sending a message *)
 loop
 accept request;
 if request = SMTP.QUIT then exit end;
 (* Protocol guarantees that request = SMTP.MAIL_FROM *)
 accept mfrom; (* Sender e-mail *)
 return OK; (* Confirm that sender is accepted *)

 (*** New mail - clearing recipients list ***)
 accept request;
 while request = SMTP.RCPT_TO do
 accept mto; (* One more recipient *)
 if (* checking the recipient is *) true then
 return SMTP.OK (* Recipient accepted *)
 (* Adding mto to the rcpt list *)
 else
 return SMTP.RCPT_REJECTED (* Recipient rejected *)
 end;
 accept request
 end; (* Request can be SMTP.DATA or SMTP.QUIT *)
 if request = SMTP.QUIT then exit end;

 (* Protocol guarantees that request = SMTP.DATA *)
 return SMTP.START_MAIL_INPUT;
 accept any_request;
 while any_request is string do
 mtextline := string(request); (* One more text line *)
 accept any_request;
 end; (* while *) (* any_request is SMTP.END *)
 (* Accept the lines of message until all received *)
 return OK
 (* Putting the message to the queue *)
 end (* loop *)
 return SMTP.BYE
 end (* of activity *) SendMail;

end (* of object *) MailServer.

Zonnon Language Report: Release v04 r00 b00 Saved on 28 July 2009 53

(* SMTP MailClient activity which implements the client side of the protocol *)

object {public} MailClient;
 var {public} server: MailServer;

 procedure {public} Configure(server: MailServer)
 begin
 self.server := server;
 end Configure;

 procedure {public} SendMail;
 var smtp: activity { MailProtocols.SMTP };
 answer: MailProtocols.SMTP;
 i: integer;
 begin
 smtp := new server.SendMail; (* new dialog with the server *)
 answer := smtp();
 if answer = MailProtocols.SMTP.SMTP_SERVER_READY then
 answer := smtp(MailProtocols.SMTP.HELO, "www.roman.nnov.ru");
 if answer = MailProtocols.SMTP.OK then
 for (* each mail in outbox *) i := 1 to 1 do
 answer := smtp(MailProtocols.SMTP.MAIL_FROM, "roman.mitin@inf.ethz.ch");
 if answer = MailProtocols.SMTP.OK then
 answer := smtp(MailProtocols.SMTP.RCPT_TO, "zueff@inf.ethz.ch");
 if answer = MailProtocols.SMTP.OK then
 answer := smtp(MailProtocols.SMTP.DATA);
 if answer = MailProtocols.SMTP.START_MAIL_INPUT then
 smtp("Hi!");
 smtp("It works!");
 answer := smtp(MailProtocols.SMTP.END);
 if answer = MailProtocols.SMTP.OK then
 answer := smtp(MailProtocols.SMTP.QUIT)
 if answer = MailProtocols.SMTP.BYE then
 (* Session closed *)
 end
 (* the following else parts would provide relevant error recovery *)
 else (* SMTP.OK missing, out of sequence *)
 end
 else (* No invitation to input data *)
 end
 else (* Recipient has been rejected *)
 end
 else (* Sender has been rejected *)
 end
 end (* for each mail in mailbox *)
 else (* Host has been rejected *)
 end
 else (* Can't connect, server not ready *)
 end
 end SendMail;

 procedure {public} Synchronise;
 begin
 activity; begin SendMail end; (* Run in a new thread *)
 (* Other synchronisation tasks such as GetMail *)
 end Synchronise;

begin (* object MailClient *)
 smtp := nil; (* initialisation code on instantiation *)
end (* of object *) MailClient.

(* This is the loadable module called User that it the initial root of program execution *)
(* It creates the mail client and server objects and then configures then to communicate with each other *)
module User;
 var server: MailServer; (* declare variables for referencing each object *)
 client: MailClient;
begin (* these statements are run when the module is loaded into memory and initialised *)
 server := new MailServer; (* instantiate the MailServer object *)
 client := new MailClient; (* instantiate the MailClient object *)
 client.Configure(server); (* call method in client object to link it with the server *)
 client.Synchronise(); (* call method in client object to initially synchronise the protocol *)
end User .

Zonnon Language Report: Release v04 r00 b00 Saved on 28 July 2009 54

18 Syntax
// Zonnon Syntax in EBNF

// 1. Program and program units
CompilationUnit = { ProgramUnit "." }.
ProgramUnit = (Module | Definition | Implementation | Object).

// 2. Modules
Module = module [Modifiers] ModuleName [ImplementationClause] ";"
 [ImportDeclaration]
 ModuleDeclarations
 (UnitBody | end) SimpleName.
Modifiers = "{" IdentList "}".
ModuleDeclarations = { SimpleDeclaration | NestedUnit ";" |
 ProcedureDeclaration | OperatorDeclaration
 ProtocolDeclaration | ActivityDeclaration }.
NestedUnit = (Definition | Implementation).
ImplementationClause = implements ImplementedDefinitionName { ","
ImplementedDefinitionName }.
ImplementedDefinitionName = DefinitionName | "[" "]".
ImportDeclaration = import Import { "," Import } ";".
Import = ImportedName [as ident].
ImportedName = (ModuleName
 | DefinitionName
 | ImplementationName
 | NamespaceName
 | ObjectName).
UnitBody = begin [StatementSequence] end.

// 3. Definitions
Definition = definition [Modifiers] DefinitionName [RefinementClause] ";"
 [ImportDeclaration]
 DefinitionDeclarations
 end SimpleName.
RefinementClause = refines DefinitionName.
DefinitionDeclarations = { SimpleDeclaration
 | { ProcedureHeading “;” }
 | ProtocolDeclaration }.
ProtocolDeclaration = protocol ProtocolName "=" "(" ProtocolSpecification ")" ";".
ProtocolSpecification = [Alphabet ","] Grammar
 | Alphabet ["," Grammar].
Alphabet = TerminalSymbol { "," TerminalSymbol }.
Grammar = Production { "," Production }.

Production = ProductionName "=" Alternative.
Alternative = ItemSequence { "|" ItemSequence }.
ItemSequence = Item { Item }.
Item = (["?"] TerminalSymbol | ProductionName | TypeName |
 Alternative | Group | Optional | Repetition).
Group = "(" ItemSequence ")".
Optional = "[" ItemSequence "]".
Repetition = "{" ItemSequence "}".
TerminalSymbol = number | ident | charConstant.
ProductionName = ident.

// 4. Implementations
Implementation = implementation [Modifiers] ImplementationName ";"
 [ImportDeclaration]
 Declarations
 (UnitBody | end) SimpleName.

Zonnon Language Report: Release v04 r00 b00 Saved on 28 July 2009 55

// 5. Objects
Object = object [Modifiers] ObjectName ObjectDefinition SimpleName.
ObjectDefinition = [FormalParameters] [ImplementationClause] ";"
 [ImportDeclaration]
 { SimpleDeclaration | ProcedureDeclaration |
 ProtocolDeclaration | ActivityDeclaration }
 (UnitBody | end).

ActivityDeclaration = activity ActivityName [FormalParameters] [ProcImplementationClause]";"
 Declarations
 (UnitBody | end) SimpleName.

// 6. Declarations
Declarations = { SimpleDeclaration | ProcedureDeclaration }.
SimpleDeclaration = (const [Modifiers] { ConstantDeclaration ";" }
 | type [Modifiers] { TypeDeclaration ";" }
 | var [Modifiers] { VariableDeclaration ";" }
).
ConstantDeclaration = ident "=" ConstExpression.
ConstExpression = Expression.
TypeDeclaration = ident "=" Type.
VariableDeclaration = IdentList ":" Type.

// 7. Types
Type = (TypeName ["{" Width "}"] | EnumType | ArrayType | ProcedureType
 | InterfaceType | ObjectType | RecordType | ProtocolType).
Width = ConstExpression.
ArrayType = array ["{" math "}"] Length { "," Length } of Type.
Length = (ConstExpression | "*").
EnumType = "(" IdentList ")".
ProcedureType = procedure [ProcedureTypeFormals].
ProcedureTypeFormals = "(" [PTFSection { ";" PTFSection }] ")" [":" FormalType].
PTFSection = [var] FormalType { "," FormalType }.
FormalType = { array "*" of } (TypeName | InterfaceType).
InterfaceType = object [PostulatedInterface].
PostulatedInterface = "{" DefinitionName { "," DefinitionName } "}".
ObjectType = object ObjectDefinition ident.
RecordType = record { VariableDeclaration ";" } end ident.
ProtocolType = activity ["{" ProtocolName "}"].

// 8. Procedures & operators
ProcedureDeclaration = ProcedureHeading [ProcImplementationClause] ";" [ProcedureBody ";"].
ProcImplementationClause = implements ImplementedMemberName { ","
ImplementedMemberName }.
ImplementedMemberName = (DefinitionName | "[" "]") "." MemberName.
ProcedureHeading = procedure [Modifiers] ProcedureName [FormalParameters].
ProcedureBody = Declarations UnitBody SimpleName.
FormalParameters = "(" [FPSection { ";" FPSection }] ")" [":" FormalType].
FPSection = [var] ident { "," ident } ":" FormalType.
OperatorDeclaration = operator [Modifiers] OpSymbol [FormalParameters] ";" OperatorBody ";".
OperatorBody = Declarations UnitBody OpSymbol.
OpSymbol = string. // A 1,2,3-character string; the set of possible symbols is restricted

Zonnon Language Report: Release v04 r00 b00 Saved on 28 July 2009 56

// 9. Statements
StatementSequence = Statement { ";" Statement }.
Statement = [Assignment
 | ProcedureCall
 | IfStatement
 | CaseStatement
 | WhileStatement
 | RepeatStatement
 | LoopStatement
 | ForStatement
 | await Expression
 | exit
 | return [Expression { "," Expression }]
 | BlockStatement
 | Send
 | Receive
 | SendReceive
 | LaunchActivity
 | AnonymousActivity
].
Assignment = Designator { "," Designator } ":=" Expression { "," Expression }.
ProcedureCall = Designator.
IfStatement = if Expression then StatementSequence
 { elsif Expression then StatementSequence }
 [else StatementSequence]
 end.
CaseStatement = case Expression of
 Case { "|" Case }
 [else StatementSequence]
 end.
Case = [CaseLabel { "," CaseLabel } ":" StatementSequence].
CaseLabel = ConstExpression [".." ConstExpression].
WhileStatement = while Expression do StatementSequence end.
RepeatStatement = repeat StatementSequence until Expression.
LoopStatement = loop StatementSequence end.
ForStatement = for ident ":=" Expression to Expression [by ConstExpression]
 do StatementSequence end.
BlockStatement = do [Modifiers]
 [StatementSequence]
 { ExceptionHandler }
 [CommonExceptionHandler]
 [TerminationHandler]
 end.
ExceptionHandler = on ExceptionName { "," ExceptionName } do StatementSequence.
CommonExceptionHandler = on exception do StatementSequence.
TerminationHandler = on termination do StatementSequence.
Send = ActivityInstanceName ["(" Designator { "," Designator } ")"].
Receive = [Designator { "," Designator } ":="] await [ActivityInstanceName].
SendReceive = Designator { "," Designator } ":=" Send.

Accept = accept QualIdent {"," QualIdent}.
LaunchActivity = new ActivityName ["(" ActualParameters ")"].
AnonymousActivity = activity ";" Declarations UnitBody.

// 10. Expressions
Expression = SimpleExpression
 [("=" | "#" | "<" | "<=" | ">" | ">=" | in) SimpleExpression]
 | Designator implements DefinitionName
 | Designator is TypeName.
SimpleExpression = ["+"|"-"] Term { ("+" | "" | or) Term }.
Term = Factor { ("*" | "/" | div | mod | "&"
 | "+*" | ".*" | "./" | "\") Factor }.

Zonnon Language Report: Release v04 r00 b00 Saved on 28 July 2009 57

Factor = number
 | CharConstant
 | string
 | nil
 | Set
 | Designator
 | new TypeName ["(" ActualParameters ")"]
 | new ActivityName ["(" ActualParameters ")"]
 | "(" Expression ")"
 | "~" Factor
 | "!" Factor
 | Factor “**” Factor.
Set = "{" [SetElement { "," SetElement }] "}".
SetElement = Expression [".." Expression].
ExpressionArray = "[" ArrayFactor "]".
ArrayFactor = ExpressionArray { "," ExpressionArray }
 | Expression { "," Expression }.
ExpressionRange = Expression | Range.
Range = [Expressions] ".." [Expression] ["by" Expression] .
Designator = Instance
 | TypeName "(" Expression ["," Size] ")" // Conversion
 | Designator "^" // Dereference
 | Designator "[" ExpressionRange { "," ExpressionRange } "]" // Array element(s)
 | Designator "(" [ActualParameters] ")" // Function call
 | Designator "." MemberName // Member selector
Instance = (self | InstanceName | DefinitionName "(" InstanceName ")").
Size = ConstantExpression.
ActualParameters = Actual { "," Actual }.
Actual = Expression ["{" [var] FormalType "}"]. // Argument with type signature

// 11. Constants
number = (whole | real) ["{" Width "}"].
whole = digit {digit} | digit {hexDigit} "H".
real = digit { digit } "." { digit } [ScaleFactor].
ScaleFactor = "E" ["+" | ""] digit { digit }.
HexDigit = digit | "A" | "B" | "C" | "D" | "E" | "F".
digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9".
CharConstant = '"' character '"' | "'" character "'" | digit { HexDigit } "X".
string = '"' { character } '"' | "'" { character } "'".
character = // Any character from the alphabet except the current delimiter character

// 12. Identifiers & names
ident = (letter | "_") { letter | digit | "_" }.
letter = "A" | ... | "Z" | "a" | ... | "z" | // any other "culturally-defined" letter
IdentList = ident { "," ident }.
QualIdent = { ident "." } ident.
DefinitionName = QualIdent.
ModuleName = QualIdent.
NamespaceName = QualIdent.
ImplementationName = QualIdent.
ObjectName = QualIdent.
TypeName = QualIdent.
ExceptionName = QualIdent.
InstanceName = QualIdent.
ActivityInstanceName = QualIdent.
ProcedureName = ident.
ProtocolName = ident.
ActivityName = ident.

Zonnon Language Report: Release v04 r00 b00 Saved on 28 July 2009 58

MemberName = (ident | OpSymbol).
SimpleName = ident.

19 References
The references are ordered alphabetically:

[AOS]
An Active Object System Design and Multiprocessor Implementation
Dr Pieter Muller
PhD Thesis 14755 ETH Zurich

[CLI] Standard ECMA-335:
Common Language Infrastructure (CLI), see section on Common Type System (CTS)
http://www.ecma.ch/ecma1/STAND/ecma-355.htm

[Compiler]
Zonnon Programmers’ Manual, ETH Zürich, 2005
This describes the implementation of the compiler for as specific platform e.g. Microsoft .NET
http://zonnon.ethz.ch

[Dijkstra]
E.W. Dijkstra, Guarded Commands, Non-Determinacy and a Calculus for the Derivation of Programs,
EWD418, Jun. 1974, 1974
http://www.cs.utexas.edu/users/EWD/ewd04xx/EWD418.pdf

[Mesa]
Mesa Language Manual Version 5.0
J Mitchell, W Maybury, R Sweet
CSL-79-3 April 1979
XEROX Palo Alto Research Center, California, USA

[Modula-2]
Programming in Modula-2
N Wirth
Springer Verlag 1982, 1983, 1985
ISBN 0-540-15078-1, ISBN 0-387-15078-1

[Monitor]
C. A. R. Hoare, Monitors: an operating system structuring concept, Comm. of the ACM, 17 (1974),
549–557.

[Oberon]
Project Oberon: The Design of an Operating System and Compiler
N. Wirth and J. Gutknecht
ACM Press 1992, ISBN 0-201-54428-8

[Pascal]
PASCAL – User Manual and Report, ISO Pascal Standard
Kathleen Jensen and Niklaus Wirth
Springer Verlag 1974, 1985, 1991
ISBN 0-387-97649-3, ISBN 0-540-97649-3

[Zonnon]
Zonnon for .NET: A Language and Compiler Experiment
J. Gutknecht and E. Zueff
LNCS 2789, Springer Verlag 2003, ISBN 3-540-40796-0

http://www.ecma.ch/ecma1/STAND/ecma-355.htm�
http://zonnon.ethz.ch/�
http://www.cs.utexas.edu/users/EWD/ewd04xx/EWD418.pdf�

	1 Introduction
	2 Program Composition
	3 Syntax Notation
	3.1 Definition of Extended Backus-Naur Formalism
	3.2 EBNF defined in EBNF
	3.3 Description of EBNF
	3.3.1 Sequence
	3.3.2 Repetition
	3.3.3 Selection
	3.3.4 Option
	3.3.5 Quotes and bold font

	4 Language Symbols and Identifiers
	4.1 Vocabulary and Representation
	4.2 Identifiers
	4.3 Modifiers and Specifiers
	4.4 Numeric Constants
	4.5 Character Constants
	4.6 String Constants
	4.7 Reserved Words, Delimiters and Operators
	4.7.1 Reserved Words
	4.7.2 Delimiters
	4.7.3 Predefined Operators
	4.7.4 User-Defined Operators

	4.8 Comments

	5 Declarations
	5.1 Identifier Declarations and Scope Rules
	5.1.1 Declaration Modifiers

	5.2 Constant Declarations
	5.3 Type Declarations
	5.3.1 Basic Types
	5.3.2 Type widths
	5.3.3 Enumeration Types
	5.3.4 Protocol types
	5.3.5 Array Types
	5.3.6 The string Type
	5.3.7 Object Types
	5.3.8 Record Types
	5.3.9 Postulated Interface Types
	5.3.10 Procedure Types
	5.3.11 Activity Types
	5.3.12 Conversion between Types
	5.3.12.1 Type name used as conversion function (predefined types)
	5.3.12.2 Type name used as conversion function (object types)
	5.3.12.3 Implicit type of constant

	5.4 Variable declarations

	6 Expressions
	6.1 Operands and Designators
	6.2 Predefined Operators
	6.2.1 Logical operators
	6.2.2 Arithmetic operators
	6.2.3 Set Operators
	6.2.4 Relations

	6.3 User-Defined Operators and Operator Declarations
	6.3.1 Operators overloading
	6.3.2 New Operator Declarations
	6.3.3 Rules governing overloading

	6.4 Operator Precedence
	6.5 Numeric resolution within expressions

	7 Statements
	7.1 The Assignment Statement
	7.1.1 Indexer Assignments
	7.1.2 Abstract Assignments
	7.1.3 Properties

	7.2 The Procedure Call
	7.3 The if Statement
	7.4 The case Statement
	7.5 The while Statement
	7.6 The repeat Statement
	7.7 The for Statement
	7.8 The loop Statement
	7.9 The return Statement
	7.10 The Block Statement
	7.10.1 Exception Handling

	7.11 The await Statement
	7.12 Protocol Send, Receive, SendReceive, Accept and Return Statements
	7.13 Activity Launch Statement

	8 Procedure and Method Declarations and Formal Parameters
	8.1 Procedure Modifiers

	9 Concurrency, Activities and Protocols
	9.1 Activities, Active Objects and Active Modules
	9.1.1 Initialising Activity Variables
	9.1.2 Activity Termination

	9.2 Protocol Controlled Activities
	9.2.1 Sending and Receiving Tokens with an Activity
	9.2.2 Sending and Receiving Tokens in Server Activities
	9.2.3 Using is operator to check token type

	9.3 Barrier Controlled Activities
	9.4 Protected Objects and Modules
	9.4.1 Object-level Protection
	9.4.2 Method-level Protection

	10 Mathematical extensions
	10.1 Data structures
	10.1.1 Expression arrays

	10.2 Indices
	10.2.1 Simple indices
	10.2.2 Ranges
	10.2.3 Numerical vector indices
	10.2.4 Boolean vector indices

	10.3 Operators
	10.3.1 Common operators
	10.3.1.1 Unary operators
	10.3.1.2 Binary operators

	10.3.2 Matrix operators
	10.3.2.1 Unary operators
	10.3.2.2 Binary operators

	10.4 Additional functions
	10.4.1 Common functions
	10.4.2 Functions for boolean arrays

	11 Program Units
	11.1 The Module
	11.2 The Object
	11.2.1 Inheritance and Multiple Inheritance
	11.2.2 Polymorphism
	11.2.3 Activities

	11.3 The Definition
	11.4 The Implementation

	12 Reflection
	12.1 XML Schema
	12.1.1 Access Rights
	12.1.2 Objects
	12.1.3 Procedure Parameters (parameter passing mode):
	12.1.4 Procedure and Variable Immutability:
	12.1.5 Operator Priority
	12.1.6 Blocks and Procedure Bodies
	12.1.7 Type, Variable and Constant Widths
	12.1.8 Enumeration Cardinality

	12.2 Example: program reflection and information

	13 Definition of Terminology
	13.1 Numeric Types
	13.2 Same Types
	13.3 Equal Types
	13.4 Assignment Compatible
	13.5 Array Compatible
	13.6 Compatible for Expressions and Operator Overloading
	13.7 Matching Formal Parameter Lists

	14 Predefined Procedures
	15 Input and Output Procedures
	15.1 Parameters and special syntax
	15.2 Input Procedures
	15.2.1 The read procedure
	15.2.2 The readln procedure

	15.3 Output Procedures
	15.3.1 The write procedure
	15.3.2 The writeln procedure
	15.3.3 Default values of widths in write and writeln

	16 Example Module Strings
	16.1 Zonnon Strings definition
	16.2 Zonnon Strings implementation by native Zonnon character arrays

	17 Example of Protocol Controlled Activities and Dialog
	18 Syntax
	19 References

