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Abstract 
Zonnon is a general-purpose programming language in the Pascal, Modula-2 and Oberon family. It 
retains an emphasis on simplicity, clear syntax and separation of concerns whilst focusing on 
concurrency and ease of composition and expression. Unification of abstractions is at the heart of its 
design and this is reflected in its conceptual model based on modules, objects, definitions and 
implementations. Zonnon offers a new computing model based on active objects with their interaction 
defined by syntax controlled dialogs. It also introduces new features including operator overloading, 
indexers and exception handling, and is specifically designed to be platform independent.  
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Zonnon Language Report 
With a new computer language one not only learns a new vocabulary and grammar 
but opens oneself to a new world of thought … 

– Niklaus Wirth 

1 Introduction 
Zonnon is a new programming language in the Pascal, Modula-2 and Oberon family. It retains an 
emphasis on simplicity, clear syntax and separation of concerns. Although more compact than 
languages such as C#, Java and Ada, it is a general-purpose language suited to a wide range of 
applications. Typically this includes component-oriented composition, concurrent systems, algorithms 
and data structures, object-oriented and structured programming, graphics, mathematical programming 
and low-level systems programming. Zonnon provides a rich object model with encapsulated behavior 
and syntax controlled dialogs which encapsulate state. It may be used to write programs in procedural, 
object-oriented and concurrent styles [see Zonnon]. Zonnon is also well suited for teaching purposes, 
from basic principles right through to advanced concepts. 

Unification of abstractions is at the heart of Zonnon’s design. This is reflected in its four pillars 

• the module—both a textual container and program composition object 

• the object—a type template for defining objects 

• the definition—a concept of abstraction and composition for defining interfaces 

• the implementation—a container for reusable fragments of object implementations  

These entities provide the basis for program composition in the large and also for textual partitioning 
and separate compilation during program development—they are ‘first-class citizens’ in the language. 

The object model in Zonnon is based on the notion that ‘everything is an object’. It supports three 
views of them, firstly as entities with an intrinsic type, used by abstract operators in a type-safe way, 
secondly as providers of services accessed via defined interfaces and thirdly as autonomous agents 
interoperating via formal dialogs. Activities are used both for adding behavior to objects and for 
implementing dialogs. They integrate concurrency seamlessly into the language. 

Many of the concepts in Zonnon have been drawn from its heritage. The intention has been to offer 
expressive and cohesive features which have proved their worth. Zonnon also introduces some new 
features such as operator overloading for representing mathematical and other expressions in a natural 
way and exception handling for improving reliability. Some features have been reintroduced from 
earlier members of the Pascal language family, for example the definition, implementation pairs and 
enumeration types from Modula-2 and, for pragmatic reasons, the read and write statements from 
Pascal. 

When choosing a language for building modern systems achieving interoperability between 
programs written in different languages within the same system is an important consideration. The 
Zonnon language is specifically designed to be platform-independent whilst supporting 
interoperability. 

A companion document, Zonnon Programmers’ Manual, contains implementation specific details 
for a particular compiler and runtime support package for a computing platform, see [Compiler]. 

2 Program Composition 
Zonnon programs are composed from four constructs: module, object, definition and implementation. 
More precisely: 

A module has a dual nature: it declares a syntactic container for logically cohesive program 
declarations and it simultaneously declares an object whose lifecycle is controlled by the system. So 
the module provides the mechanism for the textual partitioning of a source program and also the 
dynamic loading at execution time of a part of a program, in the form of an instantiated object. 

Any number of dynamically created objects may have their lifecycles managed by a program, however 
only a single instance of each module’s object may be instantiated by the system at any given time. 
Because the module forms a unit of encapsulation and data hiding, it is also ideal as a container for 
implementing abstract data types. 
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An object is a type template comprising fields, methods and activities. The fields represent the object’s 
state, the methods its functionality and the activities its concurrent activities. It can expose its interface 
to its system environment in two ways. Firstly by its intrinsic interface, that is, the set of all the 
elements which the programmer chooses to make public rather than keep private, and secondly by a 
number of definitions, each of which exposes a distinct facet representing an aspect of the object’s 
services to its clients. 

A definition defines a distinct facet of an object in terms of an abstract interface comprising field 
declarations and method signatures. Definitions can form a network of related types, not just a 
hierarchy. 

An implementation defines an aggregate of field and method implementations intended for re-use when 
incorporated into a program via one or more object templates. An object implementing a definition is 
required to implement all of its fields and methods. However, if an object imports an implementation of 
a definition with the same name as the definition then this is implicitly presumed to be its (possibly 
partial) implementation.  

A program text comprises modules, objects, definitions and implementations. The program’s intrinsic 
interface is the set of declarations made public by all of its parts. A run-time program comprises one or 
more modules and any objects that are created dynamically. The system provides mechanisms for 
dynamic program loading and unloading of modules and dynamic management of object resources at 
execution time, when a program runs. 

These constructs are used to form the overall structure of a program as module, object, definition and 
implementation program units. Each construct may exist as a separately compiled unit or may be 
textually embedded within certain of the other constructs. A number of relations hold between these 
constructs which define how they may be used together; they are as follows, where x and y each 
represent a construct: 

x contains y 
Construct x may have one or more of construct y textually nested within it. 

x imports y 
Construct x may import declarations from one or more construct y. 

x aggregates from y 
Construct x may import implementation fragments from a construct y. 

x implements y 
If the names of a definition and an implementation are identical then the implementation provides at 
least part of the implementation of the definition, or it may provide implementations for one or 
more definitions. 

x refines y 
definition x refines definition y, omitting, adding to, or modifying its services. 

The rules for valid use of the constructs (program units) are illustrated in Figure 1. They are: 

A module unit can have definition, implementation and object constructs textually nested in it  

module, definition, implementation and object units can import declarations from other module, 
definition and object units 

module, implementation and object units can aggregate from other implementation units 

module, implementation and object units can implement definition constructs  

definition constructs can refine other definition constructs  
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x/y D I O M  x/y D I O M  x/y D I O M 
D      D +  + +  D     
I      I +  + +  I  +   
O      O +  + +  O  +   
M + + +   M +  + +  M  +   

x contains y  x imports y  x aggregates from y 
                 
x/y D I O M  x/y D I O M                  Key:  
D      D +                       D= definition 
I +     I      I = implementation 
O +     O      O= object 
M +     M      M= module 

x implements y  x refines y  += Relation is valid 

Figure 1 Valid relations between Constructs (Program Units) 

3 Syntax Notation 
The syntax of the language is defined in an Extended Backus-Naur Formalism (EBNF). The complete 
syntax of Zonnon is defined in section 17. Relevant fragments of the syntax are also provided in the 
text as each feature of the language is defined. 

3.1 Definition of Extended Backus-Naur Formalism 
The EBNF notation used in this report has the following features: 

• Alternatives are separated by |.  
• Brackets [ and ] denote that the enclosed expression is optional.  
• Braces { and } denote its repetition (possibly 0 times). 
• Parentheses ( and ) are used to form groups of items.  
• Non-terminal symbols start with an upper-case letter (e.g. Statement).  
• Terminal symbols either start with a lower-case letter (e.g. letter), or are written in bold letters 

(e.g. begin), or are denoted by strings (e.g. ":="). 
• Comments start with // and continue to the end of the line. 

3.2 EBNF defined in EBNF 
It is possible to define the EBNF syntax using EBNF as an example 

Syntax = {Production}. 
Production= NonTerminalSymbol "=" Expression ".". 
Expression= Term {"|" Term}. 
Term = Factor {Factor}. 
Factor = terminalSymbol | NonTerminalSymbol |  
  "(" Expression ")" | "[" Expression "]" | "{" Expression "}" . 

3.3 Description of EBNF 
The EBNF constructs are described below: 

3.3.1 Sequence 
A = BC. 

An A consists of a B followed by a C 

Examples: 
Sentence = Subject Predicate. 
FileName = Name '.' Extension. 
Name = FirstName Surname. 

3.3.2 Repetition 
A = {B}. 

An A consists of zero or more B's. 
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Examples: 
File = {Record}. 
Bill = {Item Price}. 

3.3.3 Selection 
A = B | C. 

An A consists of a B or a C. 

Examples: 
Fork = Resource | Data. 
Meal = Breakfast | Lunch | Dinner. 

3.3.4 Option 
A = [B]. 

An A consists of a B or nothing. 

Example: 
SelectedDrink = [ Tea | Coffee | Chocolate ]. // Possibly none! 

3.3.5 Quotes and bold font 

Text in quotes or in a bold font stands for itself. 

Examples: 
ImportDeclaration = import Import {"," Import}. 
OwnSymbol = "me" | self. 

4 Language Symbols and Identifiers 

4.1 Vocabulary and Representation 
Symbols are identifiers, numbers, strings, operators, and delimiters. There are some lexical rules:  

• Blanks and line breaks must not occur within symbols and are ignored unless they are 
essential to separate two consecutive symbols (except in comments, and within strings).  

• Capital and lower-case letters are considered as distinct. 

4.2 Identifiers 
Identifiers are sequences of letters and digits and underscores ‘_’. The first character must be a letter or 
an underscore. 

ident = ( letter | "_" ) { letter | digit | "_" }. 
letter = "A" | ... | "Z" | "a" | ... | "z" | // any other "culturally-defined" letter 

The case of letters is significant in identifiers, except in predefined identifiers which may be written 
either entirely in lower-case letters or entirely in upper-case letters (see 5.3.1 and section 17) 

Examples: 
X Scan Zonnon GetSymbol firstLetter 

_external_package27  (* underscore typically used for interoperability with other languages *) 

4.3 Modifiers and Specifiers 
A modifier is used to indicate alternative semantics, where the same syntax is used for more than one 
purpose. It is a list of identifiers contained in braces and separated by commas. The valid identifiers 
depend on the context in which the modifier is applied. 

Modifiers = "{" IdentList "}".  
IdentList = ident { "," ident }. 
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ident = ( letter | "_" ) { letter | digit | "_" }. 
letter = "A" | ... | "Z" | "a" | ... | "z" | // any other "culturally-defined" letter 

Examples:  
{ value }   { public }  { public, value} 

A specifier is used to provide additional information such as the type of an expected object, or a width. 
It comprises a list of words or numbers contained in braces { } or an EBNF protocol specification (See 
also 5.3.4) 

Examples: 
var r: real{32}; (* real in 32-bit format *) 
i := integer(t); (* the value of t expressed as an integer *) 
{ bodypart = LEG | NECK| ARM} (* EBNF protocol *) 

4.4 Numeric Constants 
Numbers are (unsigned) integer, cardinal or real constants. If the constant is specified with the suffix H, 
the representation is hexadecimal, otherwise the representation is decimal. A real number always 
contains a decimal point and optionally it may also contain a decimal scale factor. The letter E means 
‘times ten to the power of’. A numeric constant may optionally be followed by a width modifier which 
is the number of bits to be used for its representation (surrounded by braces). If no width is specified 
then the default value defined in the Zonnon Programmers’ Manual  is used [Compiler]. For further 
information on types see 12.1. 

number = (whole | real) [ "{" Width "}" ]. 
whole = digit {digit} | digit {hexDigit} "H". 
real = digit {digit} "." {digit} [ScaleFactor]. 
ScaleFactor = "E" ["+" | "–"] digit {digit}. 
hexDigit = digit | "A" | "B" | "C" | "D" | "E" | "F". 
digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9". 
Width = ConstExpression. 

A whole constant is compatible with both integer (signed) types and cardinal (unsigned) types. 

Examples: 

constant type value 
1991 integer or cardinal 1991 
0DH{8}  integer{8} or cardinal{8} 13 
12.3 real 12.3 
4.567E8  real 456700000 
0.57712566E–6{64}  real{64} 0.00000057712566 

4.5 Character Constants 
A character constant is a character enclosed in single (') or double (") quote marks. The opening quote 
must be the same as the closing quote and must not be the character itself. Character constants may also 
be denoted by the ordinal number of the character in hexadecimal notation followed by the letter X. 

CharConstant = '"' character '"' | "'" character "'" | digit { HexDigit } "X". 
character = // Any character from the alphabet except the current delimiter character 

This is useful for expressing special characters that are either non-printable or that are part of an 
extended character set. 

Examples: 
"a"   'n'   "'"   '"'   20X  

4.6 String Constants 
String constants are sequences of characters enclosed in single (') or double (") quote marks; the 
opening quote must be the same as the closing quote. A string constant may not contain its delimiting 
quote character or a line break. The number of characters in a string is called its length. A single 
character string constant (of length 1) can be used wherever a character constant is allowed and vice 
versa. String constants can be assigned to variables of type string (see 5.3.1). 

StringConstant = '"' { character } '"' | "'" { character } "'". 
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character = // Any character from the alphabet except the current delimiter character 

Examples: 
"Zonnon" "Don't worry!" "x"  'hello world' 

4.7 Reserved Words, Delimiters and Operators 
Operators and delimiters are the special characters, character pairs, or reserved words listed below.  

4.7.1 Reserved Words 

The following reserved words (shown in bold in this report) may not be used as identifiers and are 
written either entirely in lower-case letters: 

accept activity array as await begin by case const definition div do else elsif end exception exit false for if 
implementation implements import in is loop mod module new nil object of on operator or procedure 
protocol record refines repeat return self termination then to true type until var while 

or entirely in upper-case letters: 
ACCEPT ACTIVITY ARRAY AS AWAIT BEGIN BY CASE CONST DEFINITION DIV DO ELSE ELSIF END 
EXCEPTION EXIT FALSE FOR IF IMPLEMENTATION IMPLEMENTS IMPORT IN IS LOOP MOD MODULE 
NEW NIL OBJECT OF ON OPERATOR OR PROCEDURE PROTOCOL RECORD REFINES REPEAT RETURN 
SELF TERMINATION THEN TO TRUE TYPE UNTIL VAR WHILE 

4.7.2 Delimiters 

The delimiter characters are: 
(  )  [  ]  {  }  . (dot) ,  (comma)  ; (semicolon)  : (colon)  .. (range) 

| (case separator)  ' (single quote)  " (double quote) 

4.7.3 Predefined Operators 

The predefined operators are: 
– (unary minus)  + (unary plus)  ~ (negation) 

** (exponentiation) 

^ (unary dereference) 

+  –  *  /  div  mod  &  or 

:= (assignment)  = (equality)  # (not equal)  <  <=  >  >=  in  implements 

4.7.4 User-Defined Operators 

Zonnon introduces the concept of user-defined operators. They are declared like procedures. (See 6.3). 

4.8 Comments 
Comments may be inserted between any two symbols in a program. They are arbitrary character 
sequences opened by the bracket (* and closed by *). Comments may be nested. They do not affect the 
meaning of a program. They are shown in italics in this report. 

(* this is a comment *) 
(* This comment continues 
  on to the next line *) 
(* Nested comments (* look like *) this *) 

5 Declarations 
Declarations are used to introduce identifiers and to indicate their type. 

Declarations = { SimpleDeclaration } { ProcedureDeclaration }. 

SimpleDeclaration = ( const [ Modifiers ] { ConstantDeclaration ";" } 
      | type  [ Modifiers ] { TypeDeclaration ";" } 
      | var   [ Modifiers ] { VariableDeclaration ";" } ). 
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5.1 Identifier Declarations and Scope Rules 
Every identifier occurring in a program must be introduced by a declaration, unless it is predefined. 
Declarations also specify certain permanent properties of an item, such as whether it is a constant, a 
type, a variable (see 5.4), or a procedure (see section 1). The identifier is then used to refer to the 
associated item.  

The scope of an identifier is the scope to which its declaration belongs and hence to which it is 
local. It excludes the scopes of identically named identifiers which are declared in nested blocks. The 
scope rules are: 

• No identifier may denote more than one item within a given scope (i.e. no identifier may be 
declared more than once in a block). 

• An identifier may only be referenced within its scope. 

• Identifiers denoting object fields or methods/procedures are valid only in object designators, 
where they must be qualified by the name of the object. 

• Related declarations within a scope may be declared in any order. 
IdentList = ident { "," ident }. 

Examples: 
Month.Oct (* see 5.3.3 *) 
NameSpace.Program 

5.1.1 Declaration Modifiers 

Declarations may have optional modifiers which are defined as follows: 
• private: the identifiers are visible only in the scope of their declarations. 
• public: the identifiers are visible in the scope in which they are declared and in any 

constructs that explicitly import the program construct that contains its declaration. 
• immutable: is used in conjunction with public and indicates that values are read-only from 

outside the scope in which of declaration. 

Declaration modifiers may be used with declarations in the inner scope of a procedure/method. 
SimpleDeclaration = ( const [ Modifiers ] { ConstantDeclaration ";" } 
      | type  [ Modifiers ] { TypeDeclaration ";" } 
      | var   [ Modifiers ] { VariableDeclaration ";" } ). 

Example: 
var {private} flag, statusWord: boolean; (* flag and statusWord are both private *) 
var {public, immutable} refCount: integer; (* read only access *) 

5.2 Constant Declarations 
A constant declaration associates an identifier with a constant value. 

ConstantDeclaration = ident "=" ConstExpression. 
ConstExpression  = Expression. 

Examples: 
const N = 10; 
 limit = 2 * N – 1;  (* see 6.2.2 *) 
 fullSet = { min(set) .. max(set) };  (* see 5.3.1 *) 

A constant expression is an expression that can be evaluated solely by a textual scan without actually 
executing the program. Its operands must be constants or calls of predefined functions. 

5.3 Type Declarations 
A data type determines the set of values variables of that type may assume and the operators that are 
applicable to them. A type declaration associates an identifier with a type. In the case of the structured 
types (arrays and objects) it also defines the structure of variables of this type. Object types are defined 
in 5.3.6 and 10.1 

TypeDeclaration = ident "=" Type. 
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Type = (TypeName [ "{" Width "}" ] | EnumType | ArrayType | ProcedureType 
  | InterfaceType | ObjectType | RecordType | ProtocolType ). 

5.3.1 Basic Types 

The basic types are denoted by predefined identifiers. The associated operators are defined in 6.2 and 
the predefined function procedures in section 13. The values of the basic types are the following: 

• object the generic type from which object types are derived (object is a reserved word) 
• boolean the truth values true and false 
• char the underlying character set of the environment 
• integer the integers between min(integer) and max(integer) 
• cardinal positive whole numbers between min(cardinal) and max(cardinal) 
• fixed large numbers with fixed precision between min(fixed) and max(fixed) 
• real the real numbers between min(real) and max(real) 
• set the set of whole numbers (integer or cardinal) between 0 and max(set) 
• string character strings 
• range type which is used for indexing mathematical arrays (see 10.2.2) 

5.3.2 Type widths 

For types char, integer, cardinal, real and set the number of bits required to contain the value can be 
specified by a modifier stating a whole number of bits as a constant value in braces { } after the type 
name. The available widths for a given implementation are defined in the Zonnon Programmers’ 
Manual. The default type widths are: 

 
char{16}, set{32}, integer{32}, real {80}, cardinal {32}, fixed{128}  

For conversion between different types see section 5.3.12. 

5.3.3 Enumeration Types 

An enumeration is a type that comprises a named list of identifiers denoting the values which constitute 
the type. These identifiers are qualified by the type name when used as named constants in the 
program. The values are ordered and their ordering relation is defined by their textual sequence in the 
enumeration list. No other values belong to the type. The ordinal number of the first value is zero and 
increases by one for each subsequent identifier. 

EnumType = "(" IdentList ")". 
IdentList = ident { "," ident }. 

Examples:  
type NumberKind = (Bin, Oct, Dec, Hex); 
 Month = (Jan, Feb, Mar, Apr, May, Jun, July, Sep, Oct, Nov, Dec); 

Names in separate enumerations need not be different as their use is always qualified. So for example 
NumberKind.Oct is distinct from Month.Oct. 

Values of expressions can be converted to a different type. (See section 5.3.12). 

The predefined function pred returns the value of the predecessor of the enumeration value given as its 
parameter, for all except the first value of the enumeration. The predefined function succ returns the 
value of the successor of the enumeration value given as its parameter, for all except the last value of 
the enumeration. 

5.3.4 Protocol types 

A protocol is a special form of enumeration that also includes the syntax of the controlled interaction of 
activities. In this case, the elements of the enumeration directly correspond to the terminal symbols in 
the protocol EBNF syntax which defines the ordering of communication between activities. The EBNF 
productions of the protocol are separated by commas, The last production must be the main (root) 
production. The “?” character indicates a response from the partner activity. The list of enumerated 
identifiers (of the EBNF tokens) may be null; this indicates that there is no communication between the 
two activities involved. See section 9  for more details. 

 
ProtocolDeclaration = protocol ProtocolName "=" "(" ProtocolSpecification ")" ";". 
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ProtocolSpecification = [ Alphabet "," ] Grammar 
                      | Alphabet [ "," Grammar ]. 

Alphabet = TerminalSymbol { "," TerminalSymbol }. 

Grammar = Production { "," Production }. 

Production = ProductionName "=" Alternative. 

Alternative = ItemSequence { "|" ItemSequence }. 

ItemSequence = Item { Item }. 

Item = ( ["?"] TerminalSymbol | ProductionName | TypeName | 
         Alternative | Group | Optional | Repetition). 

Group = "(" ItemSequence ")". 

Optional = "[" ItemSequence "]". 

Repetition = "{" ItemSequence "}". 

TerminalSymbol = number | ident | charConstant. 

ProductionName = ident. 

Example:  
protocol P = ( ); (* a ‘null’ protocol *) 
protocol  UART = (* the tokens are enumerated as terminal symbols of  the EBNF syntax *) 
  ( dataOUT = char, dataIN = char,  
    readyToSend,  clearToSend, dataOUT, clearToReceive, readyToReceive, dataIN, 
    readyToSend  ?clearToSend dataOUT} | { ?clearToReceive readyToReceive {?dataIN} } 
  ) 

See also the extended example in Section 16. 
 

5.3.5 Array Types 

An array is a structure consisting of a number of elements that are all of the same type, called the 
element type. Arrays can be indexed either by a positive whole number or by a value of an enumeration 
type. In the first case, the number of elements in the array’s declaration determines its length. The 
array’s elements are designated by indices, which are whole-number values between 0 and the array 
length minus 1. In the second case the name of the enumeration type is used in the declaration and the 
array’s elements are designated by values of the enumeration type. 

The syntax rules for the array type are: 
ArrayType = array Length {"," Length} of Type. 
Length = ConstExpression | "*". 

Arrays can be multidimensional; that is, the array elements may themselves be arrays, and mixing the 
different length specification forms is acceptable in principle. An example and a counter example are: 

type Acceptable = array * of array 42 of T; (* array *, 42 of T *) 
  Jagged = array 42 of array * of T; (* 'jagged' array *) 

The declaration array m, n of T is textually equivalent to array m of array n of T.  

For example array * of array 42 of T can be written array *, 42 of T 

The expression len(a, n) returns the number of elements in dimension n of the array a. The expression 
len(a) is a shorthand for len(a, 0). 

In an array the number of elements in any dimension may be variable and is then denoted by an 
asterisk. It is the programmer’s responsibility to allocate storage space on the heap for an array by 
using the reserved word new for each instance of the array: 

arrayVariable := new ArrayType(length0, length1, … ); 

The length values must be expressed by positive expressions of integer or cardinal type and the number 
of such expressions must correspond to the number of dimensions of the variable. An array must be 
declared as either fully static or fully dynamic. 

Examples of the use of arrays are: 
type Vector = array * of integer; 

procedure CreateAndReadVector(var a: Vector); 
 var i, n: integer; 
begin 
 read(n); 
 a := new Vector(n); 
 for i := 0 to len(a) – 1 do 
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  read(a[i]) 
 end 
end CreateAndReadVector;  

procedure InitializeMatrix(var mat: array *, * of real); 
 var i, j: integer;  
begin 
 for i := 0 to len(mat, 0) – 1 do 
  for j := 0 to len(mat, 1) – 1 do 
   mat[i, j] := 0.0 
  end 
 end 
end InitializeMatrix; 
… 
var m: array 10, 10 of real; 
… 
InitializeMatrix(m); 
 

For information about math arrays, see 10. 

5.3.6 The string Type 

Variables of type string represent immutable sequences of characters.  
Strings can be compared for equality and inequality by using the ‘=’ and ‘#’ operators. The operator ‘+’ 
signifies concatenation of strings and ‘:=’ signifies assignment. The predefined procedure copy 
converts between string type and array of char representation and vice versa and the predefined 
function len delivers the length of a string (see Section 13). The properties of the string type are not 
defined as part of the Zonnon language; see Zonnon Programmers’ Manual [Compiler]. An example of 
a library module Strings is shown in Section 15. String syntax and constants are defined in section 4.6. 

5.3.7 Object Types 

An object is a data type template comprising fields, methods and activities. The fields represent the 
object’s state, the methods its functionality and the activities its concurrent activities. It can expose its 
interface to its system environment in two ways. Firstly by the interface of its intrinsic type (referred to 
as its intrinsic interface), that is the set of all the elements which the programmer chooses to make 
public rather than keep private, and secondly by a number of definitions, each of which exposes a 
distinct facet representing an aspect of the object’s services to its clients. 

ObjectType = object ObjectDefinition ident.  

ObjectDefinition = [ FormalParameters ] [ ImplementationClause ] ";" 
        [ ImportDeclaration ] 
        { SimpleDeclaration | ProcedureDeclaration | 
          ProtocolDeclaration | ActivityDeclaration } 
        ( UnitBody | end ). 

Object = object [ Modifiers ] ObjectName ObjectDefinition SimpleName.  // when declared as a unit 

ImplementationClause = implements ImplementedDefinitionName { "," 
ImplementedDefinitionName }. 

ImplementedDefinitionName = DefinitionName | "[" "]". 

ImportDeclaration = import Import { "," Import } ";". 

Import = ImportedName [ as ident ]. 

ImportedName = ( ModuleName |   DefinitionName|   ImplementationName  
     |   NamespaceName |   ObjectName ). 

UnitBody = begin [ StatementSequence ] end. 

An object is composed of declarations including constants, types, variables (referred to as fields), and 
procedures (referred to as methods). Variables which are reference objects provide references to 
objects which are created dynamically during program execution within the program using new. An 
object may optionally have parameters which are used in the body of the object to initialize fields when 
the object is instantiated using new.  

The modifiers public and private can be used to declare the visibility of the contents of an object. If no 
modifier is present then the default is private. Individual items may be made public by explicit use of 
the modifier public following their declaration. The object itself can also have a modifier which 
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denotes it as either a value object or a reference object using the modifier values value and ref 
respectively. The default modifier is value.  

The modifier protected can be used to declare that the object is a monitor [Monitor]. This is a construct 
which at runtime prevents more than one thread of execution being executed within an object instance 
at any time. It is used to manage mutually exclusive access to the fields within an object instance, 
particularly in concurrent programs, see also section 9.4 . 

Examples: 
object {ref} Box(w, h: integer); 
 var width, height: integer; 

 procedure Area( ): integer; 
 begin 
  return width * height 
 end Area; 

begin 
 self.width := w; self.height := h (* self is optional in both cases here *) 
end Box. 
… 
var box: Box; 
… 
box := new Box(3, 7);  (* makes new Box object with width 3 and height 7 *) 

See 10.2 on objects as separately compiled program units; object declarations cannot be nested. 

5.3.8 Record Types  

A record is a value object type. It can be used to encapsulate variable declarations. The keyword 
record is equivalent to object {value}. Record declarations cannot be nested. 

 
RecordType = record { VariableDeclaration ";" } end ident. 

Examples: 
record Position; (* declares the record-type Position *) 
 x, y: integer 
end Position; 

which is equivalent to: 

object {value} Position; (* declares the record-type Position *) 
 var x, y: integer 
end Position; 

record Date; (* declares the record-type Date *) 
 year: integer{8}; 
 month: Month; 
 day: integer{8} 
end Date; 

5.3.9 Postulated Interface Types 
An interface is a type for a postulated object composed from one or more definitions; see 5.3.10 and 
10.2 for further details. 

InterfaceType = object [ PostulatedInterface ]. 

PostulatedInterface = "{" DefinitionName { "," DefinitionName } "}". 

For example: the construct  
var x: object {D,E};  

declares a variable of a generic object type with a specifier that defines that it implements the 
definitions D and E. When an object instance is assigned to x at runtime it must at least implement 
definitions D and E. 

5.3.10 Procedure Types 

A procedure type is a template for a procedure which can be referenced via a procedure variable. A 
variable of a procedure type T  has a procedure or method P or nil as its value. If P is assigned to a 
variable of type T, the formal parameter lists of P and T must match according to a set of rules. (See 
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12.4). P must not be a predefined procedure nor may it be local to another procedure. However, the 
sole exception is a global module procedure, which may be used with or without qualification within 
the module in which it is declared.  

When a method is assigned to a variable of type procedure it must be prefixed by (the designator of) an 
object instance that contains it. This may also be referred to as a ‘delegate’. When any procedure is 
called it shares the thread of execution with its caller, on termination of the procedure the caller 
resumes execution from the statement immediately following the call. 

ProcedureType = procedure [ ProcedureTypeFormals ]. 
ProcedureTypeFormals = "(" [ PTFSection { ";" PTFSection } ] ")" [ ":" FormalType ]. 
PTFSection = [ var ] FormalType { "," FormalType }. 
FormalType = { array "*" of } ( TypeName | InterfaceType ). 

Example:  
type Delegate = procedure; 
 Action = procedure (n: integer); 
 Function = procedure (n: integer): integer; 

5.3.11 Activity Types 
An activity type is a template for an activity which can be instantiated and referenced via a variable. A 
variable of an activity type T  has an activity A or nil as its value. The declaration of an activity is very 
similar to that of a procedure, however there are significant differences in their runtime behaviour. 
When a procedure is called it shares the thread of execution with its caller, on termination of the 
procedure the caller resumes execution from the statement immediately following the call. When an 
activity is instantiated it then has its own thread of execution which lasts until the activity terminates. 
Parameters are passed to and from an activity via a protocol using a procedure call –like notation.  See 
section 9.1 for more details and examples. 
 

ActivityDeclaration = activity ActivityName [ FormalParameters ] [ProcImplementationClause]";" 
         Declarations 
         ( UnitBody | end ) SimpleName. 

5.3.12 Conversion between Types 

In Zonnon, type conversions within a ‘family’ (such as integer) are implicit when guaranteed to be 
safe. However, conversions between families must be explicit (because a change of internal 
representation is involved). Inverse conversions (for example, integer{32} to integer{16}) must always 
be explicit. The exception mechanism detects conversion anomalies (see 7.10.1). 

The interoperability between types is summarized in the table below and is based on the ECMA 
Common Type System model [CLI], as used in .NET: 
 

Type family width in bits 
 8  16  32  64  128 
fixed         M 
          
real     M  M   
          
integer M  M  M  M   
          
cardinal M  M  M  M   
          
char M  M       

 
M mandatory type for conforming implementation 

 implicit conversion always allowed (within same family) 
,  explicit conversion always allowed (change of representation) 

Note that implicit conversions are transitive. Inverse conversion (in the opposite direction of the 
arrows) requires an explicit conversion and may result in truncation or an exception. 
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5.3.12.1 Type name used as conversion function (predefined types) 

To achieve a type conversion, the name of the destination type is regarded as a built-in function which 
takes an expression of the source type as a parameter and returns the converted value. An optional 
second parameter indicates the desired width of the result. 

Syntax: 
TypeName "(" Expression [ "," Size ] ")" 

Examples: 
integer(x + e/f, 16)  

is the value of the expression x + e/f represented as a 16-bit integer (exception may be raised if 
conversion not possible). 

integer(x + e/f)  

is the value of the expression x + e/f represented as a 32-bit integer (assuming that 32 is the 
implementation’s default width for integer). 

Note that integers cannot be implicitly conversion to real and so: 
var count, sum: integer; mean: real; 
… 
mean := sum / count 

is not syntactically allowed and requires explicit conversions: 
mean := real(sum) / real(count) 

5.3.12.2 Type name used as conversion function (object types) 

Zonnon supports both object-oriented programming and operator-style programming: 

In object-oriented programming, the desired definition (interface) of a servant object needs to be 
known but not its full type. If an object type X implements definitions D and E, instances of X can be 
regarded as being of types D or E respectively, depending on the client’s perspective. So, if D exports a 
method f and E exports a method g and x is a variable of type X, we can write D(x).f and E(x).g, for 
example. 
In operator-style programming, we apply operators to operands of a certain statically known type 
(strong typing). For example, we might want to apply the operator procedure: 

operator "*" (x: X; y: Y): Z; … 

to generic objects:  
var s, t: object; 

We need to a type cast which takes the function-like type-name(expression) in this case:  
if (s is X) & (t is Y) then z := f (X(s), Y(t )) else (* type error *) end 

5.3.12.3 Implicit type of constant 

The type of a simple numeric constant is determined by the declaration of the variable to which it is 
assigned. So for instance, given the declaration: 

var i: integer {16}; 

then the assignment 
i := 1 

is actually treated by the compiler as being  
i := 1{16} 

If no width is specified, then the default width for that type is assumed (see 5.3.2)  

Other type conversions are achieved by means of predefined procedures (see Section 13). 
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5.4 Variable declarations  
A variable holds a value that can be assigned to it from an expression in an assignment operation (see 
7.1). A variable is defined to have a type, which may not change, and which defines the set of values 
that it may hold. Variable declarations introduce variables by defining an identifier and a data type for 
each one. 

VariableDeclaration = IdentList ":" Type. 

Examples: 
var i, j, k: integer; 
 x, y: real; 
 p, q: boolean; 
 s: set {32}; 
 a: array 100 of real; 
 name: array 32 of char; 
 size, count: integer; 
 mousePosition: Position; 
 dateOfBirth, today: Date; 

6 Expressions 
An expression is a construct which specifies a computation. In an expression constants and current 
values of variables are combined to compute other values by the application of operators and function 
procedures. An expression consists of operands and operators; parentheses may be used to express 
specific associations of operators and operands. The types of intermediate values used during 
expression evaluation are the responsibility of the implementation (see [Compiler]). The type of the 
result of an expression is defined in the section on expression compatibility (see 12.6).  

Expression = SimpleExpression 
       [ ( "=" | "#" | "<" | "<=" | ">" | ">=" | in ) SimpleExpression ] 
    |  Designator implements DefinitionName 
    |  Designator is TypeName. 

SimpleExpression = [ "+"|"-" ] Term { ( "+" | "-" | or ) Term }. 

Term = Factor { ( "*" | "/" | div | mod | "&" ) Factor }. 

Factor = number 
   | CharConstant 
   | string 
   | nil 
   | Set 
   | Designator 
   | new TypeName [ "(" ActualParameters ")" ] 
   | new ActivityName [ "(" ActualParameters ")" ] 
   | "(" Expression ")" 
   | "~" Factor 

   | "!" Factor 
   | Factor “**” Factor. 

6.1 Operands and Designators 
With the exception of set constructors (see 6.2.3) and literal constants (numbers, character constants, or 
strings constants), operands are denoted by designators. A designator consists of an identifier referring 
to a constant, variable, or procedure. This identifier may possibly be qualified by an identifier denoting 
a module, definition, implementation or object and may be followed by selectors if the designated 
object is an element of a structure. 
 

ExpressionRange = Expression | Range. 

Range = [Expressions ] ".." [Expression ] [ "by" Expression ] . 

Designator = Instance 
     | TypeName "(" Expression [ "," Size ] ")"   // Conversion 
     | Designator "^"          // Dereference 
     | Designator "[" ExpressionRange { "," ExpressionRange } "]" // Array element(s) 
     | Designator "(" [ ActualParameters ] ")"    // Function call 
     | Designator "." MemberName       // Member selector 

Instance = ( self | InstanceName | DefinitionName "(" InstanceName ")" ). 
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Size = ConstantExpression. 

ActualParameters = Actual { "," Actual }. 

Actual = Expression [ "{" [ var ] FormalType "}" ]. // Argument with type signature 

The ^ symbol is used so that a reference can optionally be made explicit in a program text. 

Examples:  

designator type meaning 
size integer value of the variable called size 
a[i] real the element of the array a at position i 
dateOfBirth.day  integer{8} the day field of the object called dateOfBirth 
w[3].name[i] char the element at position i in the field called name of the 

element at position 3 of the array called w 

If a designates an array, then a[e] denotes that element of a whose index is the current value of the 
expression e. The expression e must be of an enumeration, a cardinal or an integer type. A designator 
of the form a[e0, e1, …., en] stands for a[e0][e1]….[en]. For further information about array indices see 
10.2. 

If obj designates an object, then obj.f denotes the field f of obj or the method f of the object obj, (see 
11.1). 

If the designated object is a constant or a variable, then the designator refers to its current value. If 
it is a procedure without any parameter list, the designator refers to the procedure itself. However, if it 
is a function procedure and is followed by a (possibly empty) parameter list it causes an activation of 
that procedure and stands for its resulting value. The actual parameters must correspond to the formal 
parameters as in proper (non-function) procedure calls. (See 7.2). 

6.2 Predefined Operators 
Predefined operators are fixed and built into the language. For further information about operators on 
math arrays see 10.3. 

6.2.1 Logical operators 

These operators apply to boolean operands and yield a boolean result. 

or logical disjunction  p or q ‘if p then true, else q’ 
& logical conjunction  p & q ‘if p then q, else false’ 
~ negation  ~ p ‘not p’ 

6.2.2 Arithmetic operators 

The operators +, –, and * apply to operands of numeric types in an expression. (See 6.3.1). The division 
operator / applies only to operands of type real and produces a result of type real. When used as 
monadic operators, – denotes sign inversion and + denotes the identity operation. 

+ sum 
– difference 
* product 
/ real quotient (of reals) 
** power (x**y signifies xy) 

Examples: 
i := j + k; 
x := real(i) / real(j); (* see section 5.3.12 *) 

The operators div and mod apply to integer and cardinal operands only. 

div integer quotient 
mod modulus 

They are related by the following formulas defined for any x and positive divisors y: 
x = (x div y) * y + (x mod y) 
0 <= (x mod y) < y 

If the value of the divisor y is negative then the meanings of the operators div and mod are 
mathematically ambiguous and so are left undefined; their effect is implementation specific. (See 
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[Compiler]). It is recommended that programmers test for this condition and employ mathematics to 
ensure that only positive divisors values are used. For example: 

x y x div y x mod y 
5 3 1 2 

–5 3 –2 1 

6.2.3 Set Operators 

Set operators apply to operands of type set and yield a result of type set. The declared bit widths of the 
operand SETs must be identical. The monadic minus sign denotes the complement of x, that is, –x 
denotes the set of integers between 0 and max(set) which are not elements of x. 
+ union bitwise or 
– difference (x – y = x * (–y)) bitwise subtraction 
* intersection bitwise and 
/ symmetric set difference (x / y = (x – y) + (y – x)) bitwise exclusive or 

A set constructor defines the value of a set by listing its elements, if any, between braces. The elements 
must be integers in the range 0 .. max(set). A range m .. n denotes all integers in the interval starting 
with element m and ending with element n, inclusive of m and n. If m > n then m .. n denotes an empty 
set. 

Set = "{" [ SetElement { "," SetElement } ] "}". 
SetElement = Expression [ ".." Expression ]. 

Examples of the use of sets: 
const left = 0; right = 1; top = 2; bottom = 3; 
var edges: set; x, y: integer; 
begin 
 edges := { }; (* the empty set *) 
 if x < xMin then edges := edges + {left}  
 … 
 if left in edges then … (* clip at left *)  … 
 
const opCodemask = {0..3}; 
var opCode, word: set; 
 … 
 opCode := word * opCodeMask; (* extract the op-code *) 

6.2.4 Relations 

Relations yield a boolean result. The relations =, #, <, <=, >, and >= apply to the numeric types and 
char. The relations = and # also apply to boolean, set and string, as well as to procedure types 
(including the value nil). x in s stands for ‘x is an element of s’. x must be of an integer type, and s of 
type set.  

= equal 
# unequal 
< less 
<= less or equal 
> greater 
>= greater or equal 
in set membership 
implements x implements D is true if object x implements definition D  
is x is T is true if and only if the intrinsic type of x is T, for any type T 

Examples of expressions  

expression type meaning 
1991 integer simple constant value 
i div 3 integer integer division of i by 3 
~wellFormed or outOfRange boolean (not well-formed) or out-of-range 
(i + j) * (i – j)  integer arithmetic expression 
s – {8, 9, 13}  set{8} s with 8, 9, 13 removed 
keys in {left, right} boolean keys is left or right or both 
('0' <= ch) & (ch <= '9') boolean ch is a digit 
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6.3 User-Defined Operators and Operator Declarations 
Operator overloading introduces the notion of user-defined operators and the opportunity to use 
familiar syntax in expressions involving them. Operators are defined only in a module implementing an 
abstract data type i.e. one that defines a new user-defined type and that implements a set of operations 
on it. Typically this can be used when introducing new data types such as complex numbers or 
matrices. 

6.3.1 Operators overloading 

The set of predefined operators that can be overloaded is as follows: 
– (unary minus)  + (unary plus)  ~ 
** (exponentiation) 
^ (unary dereference) 
+  –  *  /  div  mod  &  or  
=  #  <  <=  >  >=  in 
:= (assignment is a special case, see 6.3.3) 

The precedence of operators is defined in 6.4.  

Note that the implements and is operators cannot be overloaded, see 10.1. 

6.3.2 New Operator Declarations 

Overloaded and new operators are introduced as operator declarations. The syntax of the declaration is 
as follows: 

OperatorDeclaration = operator [ Modifiers ] OpSymbol [ FormalParameters ] ";" OperatorBody ";". 
OperatorBody = Declarations UnitBody OpSymbol. 
OpSymbol = string.   // A 1, 2 or 3-character string; the set of possible symbols is restricted 

Example:  
record Complex; 
 re, im: real; 
end Complex; 

operator '+' (x1, x2: Complex): Complex; 
var res: Complex; 
begin 
 res.re := x1.re + x2.re;  
 res.im := x1.im + x2.im; 
 return res 
end '+'; 

For all overloaded operators parameters are passed by value (as for all predefined operators) and the 
operator must produce a result. The sole exception is for the assignment operator where the first 
parameter must be passed by reference and the operator must not produce a result. 

For overloaded operators the number of parameters in an operator declaration must be the same as 
that of the predefined operator with the same symbol. For a new operator declaration the number of 
parameters in an operator declaration must be one or two, depending on whether it is a unary or binary 
operation. 

It is only possible to declare overloaded and new operators in a module, but not in an object or 
definition. The reason is to enable complete overloading resolution statically at compile time to support 
strong type checking. This is also intended to clearly separate two concepts: objects implementing 
interfaces (definitions) and abstract data types with associated operators. If necessary type conversion 
must be used at runtime, for example: to apply the operator procedure “*”(x: X; y: Y): Z to the generic 
objects var s, t: object would require conversion between types, so if  s is of type X and t is of type Y 
then z := f (X(s), Y(t)).  

Operator declaration can be made available outside the module where it is declared. In that case, it 
is legal to use those operators in units importing the module in normal expressions, together with the 
predefined operators. The compiler is responsible for selecting the right version of the operator in each 
case. 

It is possible to define operators in a module to extend an abstract data type. These operators must 
be defined in terms of the operations already defined in the module where the abstract data type is 
declared. 
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Normally, all imported entities should be qualified by the name of the imported unit. This is also 
possible, but not required, for operators. For example, there are two legal ways to use ‘new addition’ 
for operands of some type T. 

module M; 
 type {public} T = …; 
 operator {public} "+" ( a, b: T): T;  
 begin  
 … 
 end "+"; 
end M. 
 
object Obj; 
 import M; 
 var x, y : T; 
begin 
 x := x + y;  (* like a normal expression *) 
 x := x M."+" y; (* fully qualified, but less conventional *) 
end Obj. 

An operator procedure cannot be called as a normal function: 
x := M."+"(x, y);  (* not legal; must use expression notation *) 

6.3.3 Rules governing overloading 

The following set of rules applies to overloaded operators: 

1) Operators can only be introduced to define previously undefined operations, but not to 
refine previously defined operations 

2) The type of at least one operand of an overloaded operator must be a user-defined type 
(an array type defined without {math} modifier, an object type, a procedure type, an 
enumeration type). It is illegal to introduce user-defined operator versions for ‘basic’ 
types such as integer, real, and boolean. 

3) Specifying an object type with a specified interface (such as object { D }) as the 
operator’s parameter is not allowed. The reason is that it must be possible to resolve 
operator overloading completely at compile time (i.e. statically). 

4) The number of arguments, the precedence of an overloaded operator and the form (prefix 
or postfix) of unary operators, must be the same as those features for predefined operators 
with the same symbols. 

5) The dereference construct with ‘^’ symbol (see Designator production in the syntax) is 
considered here as postfix unary operator. Therefore, any overloaded ^ operator keeps the 
form of unary postfix operator; similarly, unary + and – operators are always unary prefix 
operators. 

6) All operators except assignment must produce a result, which may be of any type. 
7) It is also possible to overload assignment. In this case, the assignment symbol is 

considered as a special operator with the symbol ‘:=’ performing a certain side effect and 
producing no value. Note that the assignment operator can be used to copy the value of an 
object of the same type. If it is overloaded with parameters of the same object type then it 
will be used instead of the predefined := operator for that type. In any case the value is 
copied by default by the predefined assignment operator semantics. 

8) In the overloaded operator for assignment there must be two parameters, and the first one 
must be passed by reference. 

9) The number of operands of a new operator is determined by the number of parameters 
from the operator declaration. (See section 9).  

10) It is legal to specify more than one version of the overloaded and new operators with the 
same symbol; in that case, the types of the parameters of the corresponding operator 
declarations must differ from any other operator declaration for the same symbol. (See 
section 6.3.1) 

11) Overloaded operators can only be defined in a module where at least one of the operands 
is declared. 
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6.4 Operator Precedence 
Four classes of operators with different levels of precedence (binding strengths) are syntactically 
distinguished when used in expressions. Operators of the same precedence associate from left to right. 
For example, x – y – z stands for (x – y) – z. Operator precedence from highest to lowest is: 

1. unary negation operator ~  
2. exponentiation operator ** 
3. multiplication operators * div mod / 
4. addition operators + - 
5. relations <  <=  =  #  >=  >  implements in is   

The available operators are listed in the following tables. Some operators are applicable to operands of 
various types, denoting different operations. In these cases, the actual operation is effectively 
‘overloaded’ and the appropriate one to use is identified by the type of the operands. The operands 
must be expression compatible with respect to the operator, see 12.6. 

6.5 Numeric resolution within expressions 
An expression consists of a series of evaluations of operators on their operands. For each operator the 
relationship between the resolution (width) of each of its operands and the result of the operation is 
defined as follows: 

 
operator first operand second operand result 
+ integer{s} integer{t} integer{max(s, t)} 
– integer{s} integer{t} integer{max(s, t)} 
* integer{s} integer{t} integer{s + t} 
div integer{s} integer{t} integer{s} 
mod integer{s} integer{t} integer{t} 
** integer{s} integer{t} integer{s + t} 
+ cardinal{s} cardinal{t} cardinal{max(s, t)} 
– cardinal{s} cardinal{t} cardinal{max(s, t)} 
* cardinal{s} cardinal{t} cardinal{s + t} 
div cardinal{s} cardinal{t} cardinal{s} 
mod cardinal{s} cardinal{t} cardinal{t} 
+ real{s} real{t} real{max(s, t)} 
– real{s} real{t} real{max(s, t)} 
* real{s} real{t} real{s + t} 
/ real{s} real{t} real{s + t} 
** real{s} real{t} real{s + t} 
+ fixed fixed fixed 
– fixed fixed fixed 
* fixed fixed fixed 
/ fixed fixed fixed  
** fixed fixed fixed  
Note: max(s, t) = s, if s > t else t 

The compiler implementation is responsible for conserving the integrity of intermediate values during 
the evaluation of an expression [Compiler]. 

7 Statements 
Statements denote actions. There are elementary and structured statements. Elementary statements are 
not composed of any parts that are themselves statements. They are the assignment, the procedure call, 
await, return and exit statements. Structured statements are composed of parts that are themselves 
statements. They are used to express sequencing and conditional, selective, and repetitive execution. A 
statement may also be empty, in which case it denotes no action. The empty statement is included in 
order to relax punctuation rules in statement sequences. 

Statement = [ Assignment 
    | ProcedureCall 
    | IfStatement 
    | CaseStatement 
    | WhileStatement 
    | RepeatStatement 
    | LoopStatement 
    | ForStatement 
    | await Expression 



   

Zonnon Language Report: Release v04 r00 b00 Saved on 28 July 2009 20

    | exit 
    | return [ Expression { "," Expression } ] 
    | BlockStatement 
    | Send 
    | Receive 
    | SendReceive  
    | Accept 
    | LaunchActivity 
    | AnonymousActivity 
    ]. 

Statement sequences denote the sequence of actions specified by the component statements which are 
separated by semicolons. 

StatementSequence = Statement { ";" Statement }. 

Example: 
temp := a; a := b; b := temp (* swap values in a and b*) 

7.1 The Assignment Statement 
An assignment statement replaces the current value of a variable by a new value specified by an 
expression. The expression must be assignment compatible with the variable. (See 12.4). The 
assignment operator is written as ‘:=’ and pronounced as ‘becomes’. 

Assignment = Designator { "," Designator } ":=" Expression { "," Expression }. 

Note that multiple assignments may be made using a single statement. The effect when such statements 
are evaluated is as follows: 

1. Each expression on the right-hand side is evaluated to produce a value. 

2. Then the values are assigned in any order to their corresponding designated variables on the 
left-hand side. 

The semantics are the same as for guarded commands [Dijkstra] and support the possibility of 
execution. 

Examples: 
i := 0; 
p := i = j; 
x := i + 1; 
k := log2(i + j); 
F := log2; 
s := {2, 3, 5, 7, 11, 13}; 
a[i] := (x + y) * (x – y); 
t.key := I; 
w[i + 1].name := "John"; 
t := c; 
x, y, z := a ,b, c;  

7.1.1 Indexer Assignments 
It is convenient to access the fields within an object as if it were an array using an indexer, otherwise 
such variables are usually indirectly accessed via specific method calls. Indexer access is achieved 
using a built-in generic definition called “[ ]” with actual methods Get and Set which enable object 
types to implement this definition. The Get and Set methods implement the indexed mapping from the 
callers index to the objects fields. A template for this is: 
 object x implements … , [ ] ; 

  … 
  procedure Get (i, j: integer): real implements [ ].Get ; 
  begin … (* implements self [i, j] *) 
  end Get; 
 
  procedure Set (i, j: integer; x: real): implements [ ].Set ; 
  begin … (* implements self [i, j] := x *) 
  end Set; 
  … 
 end x; 
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For indexed access of an object the following abbreviated syntax is allowed:  
ImplementationClause = implements  
 ImplementedDefinitionName { ","ImplementedDefinitionName }. 

ImplementedDefinitionName = DefinitionName | "[" "]". 

 var x: X; 
 x[i, j] (* instead of [ ](x).Get(i, j) *) 
 x[i, j] := 3.14; (* instead of [ ](x).Set(i, j, 3.14) *) 

For an indexer the number of index dimensions allowed depends on the compiler implementation 
[Compiler]. 

7.1.2 Abstract Assignments 
The notion of an indexer is also used to achieve a so-called abstract assignment for direct access to a 
field of an object. Here the assignment operator “:=” is dropped and the abstract assignment is re-
interpreted as the Set method of a zero dimensional indexer.  
 
A template for defining an abstract assignment is: 
 object A implements [ ] ; 

  … 
  procedure Set (b: B): implements [ ].Set ; 
  begin … (* implements self [ ] := b *) 
  end Set; 
  … 
 end A; 

 
This can be then used in a full or an abbreviated form as follows: 
 var a: A; b: B; 

  … 
  a[ ] := b;  (* full form *) 
  a := b;   (* abbreviated form *) 

7.1.3 Properties 

A property is a variable or object field for which access procedures are provided by the programmer 
and automatically called whenever its variable is accessed. Whenever the value of the variable is 
accessed in an expression the function that implements Get is called. Also whenever the value of the 
variable is set by an assignment, the procedure that implements Set, is called. A variable for which only 
a Get property is provided is ‘read only’ and a variable for which only a Set property is provided is 
‘write only’.  
The behavior of a property is defined by its implicit methods Get and Set. So, for a property p: P 
defined in a definition D the objects implementation has the form: 

 
 definition D; 

  var p: P; 
 end D. 
  
 object Obj implements D; 
 
  procedure f ( …): P implements D.p.Get;  
 (* 'getter': called automatically whenever p is accessed *) 
  begin … 
   return (…) 
  end f; 
 
  procedure g ( …) implements D.p.Set;   
 (* 'setter': called automatically whenever p is assigned the value of the expression *) 
  begin … 
  end g; 
 end Obj. 

 
The invocation of the property’s Get and Set methods is transparent in the original program text at the 
access; in other words their behaviour is effectively a side effect, but an intentional one. 
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7.2 The Procedure Call  
Within a module a procedure call invokes a procedure. When it is declared within an object a procedure 
is referred to as a method. In either case it may contain a list of actual parameters which replace the 
corresponding formal parameters defined in the procedure declaration. (See section 1). The 
correspondence is established by the relative ordering of the parameters in the actual and formal 
parameter lists. There are two kinds of parameters: variable and value parameters. 

If a formal parameter is a variable parameter, the corresponding actual parameter must be a 
designator denoting a variable. If it denotes an element of a structured variable, the component 
selectors are evaluated when the formal/actual parameter substitution takes place, i.e. before the 
execution of the procedure. If a formal parameter is a value parameter, the corresponding actual 
parameter must be an expression. This expression is evaluated before the procedure activation, and the 
resulting value is assigned to the formal parameter. 

ProcedureCall = Designator. 

Examples: 
WriteInt(i * 2 + 1) 
inc(w[k].count) 
t.Insert("John") 

A method call consists of the name of an object, followed by a period and then the name of a procedure 
declared within the object type declaration of the object. Within the method the reserved word self 
refers to the object on which the method was called. 

A specific procedure call may also be ‘safeguarded’, by prefixing the object with a definition. For 
example: 

object T implements I, D; … end T; 
var t: T; 

A client who wants to make specific use of t’s interpretation of the services specified by D (e.g. as a 
supercall) would then simply call D’s methods and fields safeguarded by t: 

D(t).f(..); ..; .. := D(t).x; 

The order in which the parameters is evaluated during procedure/method invocation is defined in the 
Zonnon Programmers’ Manual [Compiler]. 

7.3 The if Statement 
IfStatement =  
 if Expression then StatementSequence 
 {elsif Expression then StatementSequence} 
 [else StatementSequence] 
 end. 

Example: 
if ("A" <= ch) & (ch <= "Z") then ReadIdentifier 
elsif ("0" <= ch) & (ch <= "9") then ReadNumber 
elsif (ch = "'") or (ch = ' " ') then ReadString 
else SpecialCharacter 
end 

An if statement specifies the conditional execution of guarded statement sequences. The expression 
preceding a statement sequence is called its guard and its type must be boolean. The guards are 
evaluated in sequence of occurrence; if one evaluates to true, its associated statement sequence is 
executed. If no guard is satisfied, the statement sequence following the symbol else is executed, if there 
is one. 

7.4 The case Statement 
The case statement specifies the selection and execution of a statement sequence according to the value 
of an expression. First the case expression is evaluated then the statement sequence whose case label 
list contains the obtained value is executed. The case expression must either be of an integer or cardinal 
type that is expression compatible (see 12.6) with the types of all case labels, or both the case 
expression and the case labels must be of type char or an enumeration. case labels are constants, and 
no value must occur more than once. If the value of the expression does not occur as a label of any 
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case, the statement sequence following the symbol else is selected, if there is one, otherwise the 
UnmatchedCase exception is raised (see 7.10.1).  

CaseStatement =  case Expression of 
         Case { "|" Case } 
     [ else StatementSequence ] 
       end. 
Case = [ CaseLabel { "," CaseLabel } ":" StatementSequence ]. 
CaseLabel = ConstExpression [ ".." ConstExpression ]. 

Example: 
case ch of 
 "A" .. "Z": ReadIdentifier (* assumes contiguous encoding of letters*) 
 | "0" .. "9": ReadNumber  
 | "'", '"': ReadString 
 else SpecialCharacter 
end 

case month of 
 Month.Apr, Month.Jun, Month.Sep, Month.Nov: days := 30  
| Month.Feb:   
  if Leap(year) then  
   days := 29 
  else  
   days := 28  
  end  
 else days := 31 
end 

7.5 The while Statement 
The while statement specifies the repeated execution of a statement sequence while the expression of 
type boolean (its guard) yields true. The guard is checked before every execution of the statement 
sequence and so the statement sequence will be executed zero or more times. 

WhileStatement = while Expression do StatementSequence end. 

Examples 
var i, k, idNumber: integer; 
… 
while i # 3 do writeln('Hello'); i := i + 1 end 

read(idNumber); 
while ~Valid(idNumber) do  
 write('Type ID number again ');  
 read(idNumber)  
end; 
(* Valid(idNumber) *) 

while i > 0 do i := i div 2; k := k + 1 end 

while (t # nil) & (t.key # i) do t := t.left end 

7.6 The repeat Statement 
A repeat statement specifies the repeated execution of a statement sequence until a condition specified 
by an expression of type boolean is satisfied. The statement sequence is executed at least once. 

RepeatStatement = repeat StatementSequence until Expression. 

Examples: 
var idNumber: integer; 

repeat 
 write ('Type ID number '); read(idNumber) 
until Valid(idNumber);  
… 

var i, x: integer; buffer: array 10 of integer; 
… 
(* convert non-negative value of x to decimal representation *) 
i := 0; 
repeat buffer[i] := x mod 10; x := x div 10; inc(i) until x = 0;  
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(* write out digit characters in correct order *) 
repeat dec(i); write(char(buffer[i] + integer("0"))) until i = 0 

7.7 The for Statement 
A for statement specifies the repeated execution of a statement sequence for a fixed number of times 
while a progression of values is assigned to a variable of integer or cardinal type called the control 
variable of the for statement. 

ForStatement = for ident ":=" Expression to Expression [by ConstExpression] do 
 StatementSequence  
end. 

The statement 
for v := low to high by step do statements end 

is equivalent to 
v := low; temp := high; 
if step > 0 then 
 while v <= temp do statements; v := v + step end 
else 
 while v >= temp do statements; v := v + step end 
end 

The value of the expression low must be assignment compatible with v and that of high must be 
expression compatible with v. The value of step must be a non-zero constant expression of an integer or 
cardinal type. If by step is omitted, then step defaults to the value 1.  

Example: 
var i : integer; 
… 
for i := 0 to 79 do k := k + a[i] end 
for i := 79 to 1 by –1 do a[i] := a[i–1] end 

7.8 The loop Statement 
A loop statement specifies the repeated execution of a statement sequence. It is terminated upon 
execution of an exit statement within that sequence. 

LoopStatement = loop StatementSequence end. 

Example: 
loop (* copy integers from input to output until 0 is typed *) 
 read(i); 
 if i = 0 then exit end; 
 write(i) 
end 

loop statements are useful for expressing repetitions with several exit points or cases where the exit 
condition occurs naturally in the middle of the repeated statement sequence.  

An exit statement is denoted by the symbol exit. It specifies termination of the enclosing loop 
statement and continuation with the statement following that loop statement. An exit statement is 
contextually, although not syntactically, associated with the loop statement which contains it. 

7.9 The return Statement 
A return statement is used within procedures and activities. In a procedure it is used to return a value 
from back its caller. It is denoted by the symbol return, followed by an expression if the procedure is a 
function procedure. The type of the expression must be assignment compatible (see 12.4) with the 
result type specified in the procedure.  Function procedures require the presence of a return statement 
indicating the result value. In proper procedures, a return statement is implied by the end of the 
procedure body. Any explicit return statement therefore appears as an additional (probably 
exceptional) termination point. 

In an activity the return statement must have a parameter and it is used to return the parameter 
value back to the client activity according to a protocol. However, in contrast to procedures statement 
execution continues with the next statement in the activity. See also section 9.2.2. 
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7.10 The Block Statement 
The block statement allows the grouping together of logically related statements and the introduction of 
exception handlers. Block statements can be nested. 

BlockStatement = do [ Modifiers ] 
     [ StatementSequence ] 
     { ExceptionHandler } 
     [ CommonExceptionHandler ] 
     [ TerminationHandler ] 
    end. 

The statement sequence within the block is carried out.  

7.10.1 Exception Handling 

If an exception occurs then the exception handlers are tried in the order in which they appear textually 
until one that matches the exception is found or the general exception is reached. The statement 
sequence corresponding to the exception name is then carried out.  

ExceptionHandler = on ExceptionName { "," ExceptionName } do StatementSequence. 
CommonExceptionHandler = on exception do StatementSequence. 
TerminationHandler = on termination do StatementSequence. 

Exception names take the form of predefined identifiers and include: 
• ZeroDivision: division by zero 
• Overflow: value does not lie within min(type) .. max(type) 
• OutOfRange: array index out of bounds 
• NilReference: uninitialized array/object/activity/protocol instance 
• UnmatchedCase: control flow reached missing else in case statement 
• Conversion: invalid type conversion (not guarded by ‘t is type’) 
• Read: wrongly formatted input value for read or readln 
• ProtocolMismatch: the sequence of use of tokens does not match the EBNF protocol syntax 
• IncompatibleSizes: math arrays have incompatible sizes 
• NoSLUSolution: system of linear equations doesn’t have a solution 

Extra information about the exception can be accessed by calling the predefined function reason. This 
causes the runtime system to return a string which explains the reason for the exception, and possibly 
the system context, to aid program development. For example: 

do 
 Statements 
on T1, T2 do 
 (* reason returns a string containing system defined info and the name T1 or T2 *)  
 s := reason  
on exception do 
 (* reason returns a string with the name of the exception thrown and possible system-defined information *) 
 s := reason  
end 

If reason is called outside the scope of an exception it returns the current error or warning status 
information from the runtime system. See also [Compiler]. 

The following form acts as a ‘catch all’: 
do 
 Statements 
… 
on exception do 
 CatchAll 
end 

means that CatchAll is only executed if an exception has occurred but no textually earlier exception 
clause in the block matched the exception. 

 Example: 
var idNumber: integer; idValid: boolean; 
begin 
 do 
  read(idNumber); 
  if Valid(idNumber) then  
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   idValid := true; Process(idNumber) 
  else  
   idValid := false (* wrong number *) 
  end 
  on exception do  
  idValid := false (* wrong sort of characters typed *)  
 end 
end 

7.11 The await Statement 
The await statement is used for conditional scheduling within an activity in an object or module [AOS].  

await Expression 

It must occur within a block statement which has a locked modifier. The expression defines the 
precondition of continuation of execution. 

When it is executed the Boolean expression is evaluated and if it is true then execution continues at 
the next statement. However, if it is false then execution is suspended until the system scheduler 
subsequently re-evaluates the condition (possibly on more than one occasion) and finds that it has 
become true. When this occurs execution continues at the next statement. 

Example: object Buffer 

This example shows how a first-in-first-out buffer can be implemented using an object. The producer, 
which ‘puts’ the data, is assumed to belong to a different activity to the consumer, which ‘gets’ it. The 
await statements regulate the content of the buffer. The locked modifiers ensure mutual exclusion of 
access to the shared buffers whenever they are being altered, to conserve their integrity. 

object Buffer; 
(* First-in first-out buffer ('thread safe') *) 
 const bufLen = 1000; 
 var data: array bufLen of integer; 
  in, out: integer; 
 
 procedure {public} Put (i: integer); (* put element into the buffer *) 
 begin {locked} 
  await (in + 1) mod bufLen # out;  (* wait until not full *) 
  data[in] := i; 
  in := (in + 1) mod bufLen 
 end Put; 
 
 procedure {public} Get (var i: integer); (* get element from the buffer *) 
 begin {locked} 
  await in # out;  (* wait until not empty *) 
  i := data[out]; 
  out := (out + 1) mod bufLen 
 end Get; 
 
begin 
 in := 0; out := 0; 
end Buffer; 

7.12 Protocol Send, Receive, SendReceive, Accept and Return Statements 
There are several statements associated with activities and protocols, they are the send, receive, 
sendReceive, accept and return statements. They are described in sections 9.2.1 and 9.2.2. 

7.13 Activity Launch Statement 
An activity is launched using new to instantiate it, and possibly to provide initializing parameters, see 
section 9.1 for details. 

LaunchActivity = new ActivityName [ "(" ActualParameters ")" ]. 

8 Procedure and Method Declarations and Formal Parameters 
A procedure declaration consists of a procedure heading and a procedure body. The heading specifies 
the procedure’s identifier and its formal parameters, if any. The body contains declarations and 
statements. The procedure identifier is repeated at the end of the procedure declaration. A procedure 
declared within an object is called a method. 
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There are two kinds of procedures: proper procedures and function procedures. The latter are 
activated by a function designator as a constituent of an expression and yield a result that is an operand 
of the expression. Proper procedures are activated by a procedure call. A procedure is a function 
procedure if its formal parameters specify a result type. The body of a function procedure must contain 
a return statement that defines its result. 

All constants, variables, types, and procedures declared within a procedure body are local to the 
procedure. Since procedures may be declared as local items too, procedure declarations may be nested 
(subject to implementation restrictions). The call of a procedure within its declaration implies recursive 
activation. 

In addition to its formal parameters and locally declared items, the items declared in the 
environment of the procedure are also visible in the procedure (with the exception of those items that 
have the same name as an item declared locally). 

ProcedureDeclaration = ProcedureHeading [ ProcImplementationClause ] ";" [ ProcedureBody ";" ]. 
ProcImplementationClause = implements ImplementedMemberName { "," 
 ImplementedMemberName }. 
ImplementedMemberName = ( DefinitionName | "[" "]" ) "." MemberName. 
ProcedureHeading = procedure [ Modifiers ] ProcedureName [ FormalParameters ]. 
ProcedureBody = Declarations UnitBody SimpleName. 
FormalParameters = "(" [ FPSection { ";" FPSection } ] ")" [ ":" FormalType ]. 
FPSection = [ var ] ident { "," ident } ":" FormalType. 

Formal parameters are identifiers declared in the formal parameter list of a procedure. They correspond 
to actual parameters specified in the procedure call. The correspondence between formal and actual 
parameters is established when the procedure is called. There are two kinds of parameters, value and 
variable parameters, indicated in the formal parameter list by the absence or presence of the keyword 
var. Value parameters are local variables to which the value of the corresponding actual parameter is 
assigned as an initial value. Variable parameters correspond to actual parameters that are variables, and 
they stand for these variables. The scope of a formal parameter extends from its declaration to the end 
of the procedure block in which it is declared. A function procedure without parameters must have an 
empty parameter list. It must be called by a function designator whose actual parameter list is empty 
too.  

The rules for the correspondence between formal and actual parameters are as follows. Let Tf be the 
type of a formal parameter f (not an open array) and Ta the type of the corresponding actual parameter 
a. For variable parameters, Ta must be the same as Tf, or Tf must be an object type and Ta must be 
derived from Tf. For value parameters, a must be assignment compatible with f. (See 12.4). 

If Tf is an open array, then a must be array compatible with f. (See 12.5). The lengths of f are taken 
from a. 

8.1 Procedure Modifiers 
A modifier may optionally occur after the reserved word procedure to denote its nature. The following 
modifiers are defined: 

• private: the procedure is only visible in the scope in which it is declared; this is the default. 
• public: the procedure is visible in the scope in which it is declared and within any construct 

that imports the construct in which it is declared. 
• sealed:  the procedure may not be further redefined (overridden), 

 The inverse of being sealed is referred to as being open 

Examples: 
procedure ReadInt(var x: integer); 
 var i: integer; ch: char; 
begin  
 i := 0; read(ch); 
 while ("0" <= ch) & (ch <= "9") do 
  i := 10 * i + (integer(ch) – integer("0")); read(ch) 
 end; 
 x := i 
end ReadInt; 

procedure {private} WriteHex(x: integer);  
(* precondition: 0 <= x < 100000H *) 
 var i: integer; buf: array 5 of integer; 
begin 
 i := 0; 
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 repeat buf[i] := x mod 10H; x := x div 10H; inc(i) until x = 0; 
 repeat dec(i);  
  if buf[i] < 10 then write(char(buf[i] + integer("0"))) 
  else write(char(buf[i] – 10 + integer("A"))) 
  end 
 until i = 0 
end WriteHex; 

procedure log2(x: integer): integer; 
(* precondition: x > 0 *) 
 var y: integer;  
begin 
 y := 0;  
 while x > 1 do x := x div 2; inc(y) end; 
 return y 
end log2; 

9 Concurrency, Activities and Protocols 
Zonnon can be used to write either sequential or concurrent programs. They can be designed in a 
modular- or an object oriented style, or a mix of both. It is possible to express the concurrency structure 
of the program’s solution using dynamically instantiated activities, each of which has its own thread of 
statement execution. Pairs of activities can be bound together by a protocol type and interact via links 
according to a dialog specified in EBNF. The topology of the network is created dynamically at run 
time by the program i.e. the links are logical rather than physical and the activities are not pre-allocated 
to particular processors. There may be one or more processors. The execution of the activities is 
dynamically scheduled by the runtime system.  

Zonnon is designed for writing high-level concurrent programs in a clear, well structured and type-safe 
way. The important point is that it should be possible to express concurrent problem solutions in a 
natural way i.e. in terms of high-level abstractions rather than direct manipulations of low-level 
abstractions such as processes, threads or fibers via library calls. 

9.1 Activities, Active Objects and Active Modules 
An activity encapsulates its own state space and a thread of execution of statements separate from that 
of the new statement which instantiates and then initiates it. This enables modules and objects to 
contain one or more dynamically created separate activities which can then be allocated by the runtime 
system to one or more processors for execution. Activities run in addition to, and concurrently with, the 
program’s thread of execution shared by all the module and object bodies. Objects and modules can 
develop structures of cooperating activities dynamically and facilities are available for managing 
simultaneous access to object and module state spaces, see 10. 

Activities can be declared wherever procedures can be declared and they resemble them syntactically, 
however they differ from procedures in some respects: 

 
1. Activities are declared and then instantiated using the new operator rather than being called. 
2. An activity declaration may be instantiated many times to create many clone activities. 
3. There is one exception to this when an anonymous activity is declared in-line at the statement 

level. In this case it is instantiated when its statement is executed. 
4. Any instantiated activity executes independently from its creator and has its own procedure 

activation stack.  
5. Activities only terminate when all statements within their body have been executed. 
6. An activity may optionally implement a ‘protocol’ which syntactically defines an exchange of 

tokens with its parent activity. 
 
Activities use a procedure-like model of parameter passing to achieve the passing of protocol tokens. 
Notice that a simple form of ‘multiple assignment’ is provided for an activity to conveniently receive a 
list of tokens, see.7.1.2 . From this viewpoint a procedure call can be considered an equivalent of an 
activity so: 

 
procedure P (s: S; t: T): R; ….; r := P(s, t)  

is equivalent to 
 
do 
 create activity of type P; send tokens s and t; receive tokens r 
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end  

The reserved word activity is used to differentiate an activity declaration from that of a procedure. Once 
an activity has been declared then instances of it can be created in any active object or module. 
Activities provide a means of encapsulating concurrent behavior added to an object or module (in its 
role as a singleton object). An object may contain an arbitrary number of activities, or none at all, in 
which case it is a passive object. Typically activities are private to the object (or module) that contains 
them and are instantiated by the constructor new. 

Example: 
 

object Cell (* of a pipeline *);  (* declaration of an object *) 
 type Job = …; 
 var in, out, n: integer;  (* the object's state space when instantiated *) 
  buf: array N of Job; 
 
 procedure Get (j: Job);  (* the object's methods *) 
 begin …  
 end Get; 
 
 procedure { public } Put (j: Job); 
 begin …  
 end Put; 
 
 activity Process;    (* activity declaration within the object *) 
  var …      (* declare state space of the activity *) 
 begin  
  … 
 end Process; 
 
 var p: Process; (* reference variable for an activity instance *) 
 
begin 
 n := 0; in := 0; out := 0; 
 p := new Process     (* create an activity instance in the instance of  the Cell object *) 
end Cell; 

9.1.1 Initialising Activity Variables 
It is possible to send a sequence of arguments to an activity when it is instantiated in order to initialise 
its state space (variables). The arguments are passed as parameters to the instantiator new. The types of 
the arguments are checked in the same way as for a procedure. For example: 
activity A( a, b, c: integer ); 
begin  

… 
end A; 
 
var a: A; 

… 
a := new A( 10, 10, 10 ); 
… 

 
The result of the example above is equivalent to: 
activity A; 

var a, b, c: integer; 
begin  

accept a, b, c; 
end A; 

9.1.2 Activity Termination 
Once an activity has been spawned there is no facility within the language to pre-emptively terminate 
it, i.e. there is no concept of ‘assassination’. It is possible that some Zonnon implementations might 
offer such a facility in the form of an additional ‘kill’ procedure in the runtime system [Compiler]. 

Note that an object containing activities may only terminate when there are no longer any references to 
it, and when all of its activities have terminated. An activity terminates after the execution of the 
statement immediately preceding the end of its body. 
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9.2 Protocol Controlled Activities 
An activity can spawn another activity in the same, or a different, object or module. When this occurs 
the two activities can share a formal protocol which governs the dialog of interaction between them 
defined in the form of an EBNF syntax. Of course it is possible for a protocol to be null, in which case 
there is no interaction specified. See also 5.3.4 Protocol types. A complete example of the use of 
activities is presented in section 16 . 
 
Such activities are created and interact in the following way: 
 

1. A protocol type is declared which defines the valid sequence of interaction between the 
activities in the form of an EBNF syntax. 

2. The first activity is instantiated within a module or object, it is referred to as the client.  
3. The client activity then instantiates the second activity in a module or object, it is referred to 

as the server. The client and the server both implement (share) the same protocol. The client 
activity is always anonymous from the server’s viewpoint. The client references its server 
using an variable of the activity’s type. 

4. The two activities can now interact according to the EBNF syntax defined in the protocol they 
share. This is achieved by using the client sending and receiving parameters to and from its 
server; in turn the server accepts parameters from its client and returns parameters back to it. 

5. The is operator can be used to discriminate between different types of syntactic tokens (see 
6.2.4). The allowed types are integer, real, string, keywords (i.e. the enumerated tokens of the 
protocol) and special characters. 

6. The dialog is only ended when either of the two activities has terminated; either by reaching 
the end of its begin … end body, or terminating due to trap to the system (catastrophic error). 

 
A protocol controlled activity supports explicit synchronisation and communication with its client 
activity; it may be declared in the scope of a different object or module. An activity may spawn another 
activity in either the same or another object or module hence gaining access to its scope via parameters 
passed according to the protocol. Here is an example of a simple protocol and a server activity: 
protocol P = (a, b, c, P = a | b | c); 
activity A implements P; 

var p: P; 
begin  
 accept p; (* receives the token sent by the client activity *) 
 if p = P.a then 
  (* token a *) 
 elsif p = P.b then 
  (* token b *) 
 else  
  (* token c *) 
 end 
end A; 
 

A complete example of the use of activities is presented in section 16 . 

9.2.1 Sending and Receiving Tokens with an Activity 
An activity can be created instantiated from a module, object, procedure or activity body. It is possible 
to send tokens (parameters) to it and receive tokens back from it. Note that the compiler does not check 
the types of the parameters. The format for sending tokens resembles a procedure call. The send 
operation is non-blocking, that is, execution continues immediately with the next statement. 
 
Example: 
activity A; (* declaration of the activity type *) 
begin  

 … 
end A; 
… 
(* Now in the module, object or activity that is going to create the instance for the client … *) 
var a: A; s: string; 
begin 

a := new A; (* Create the instance of the activity and store its reference in a variable *) 
a ( 1024 ); (* Send an integer constant via the activity reference *) 
a ( “Hello”);  (* Send a string constant *) 
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a ( “My name is ”, s, 17 ); (* Send a string constant, a reference to the string object and an integer constant *) 
end; 
 
Tokens that are then returned by the activity are received by the original sender. The received token 
values are implicitly converted to destination variable type if necessary. If a type conversion error 
occurs the standard system exception conversion will be thrown, see 7.10.1. The format for receiving 
tokens resembles a function procedure call. The receive operation is blocking, that is, execution only 
continues with the next statement when all the tokens involved in the statement have been received. 
 
Example: 
 
(* Now following on from the previous example and looking from the original sender’s viewpoint … *) 
var a: A; s, b: string; i, d: integer; c: object; 

… 
(* receive a stream of tokens from the activity … *) 
i := a ( );  (* receive token and convert to integer *) 
s := a ( );  (* receive token and convert to a string *) 
b, c, d := a ( );  (* receive three tokens: the literal string, a reference to a string and an integer *) 
... 

 
It is also possible to combine the sending and receiving of tokens into a single statement. Note that in 
this case the statement effectively blocks the sender until all the expected returned tokens have arrived 
and have been assigned to their variables. 
 
Example: 
activity A; (* declaration of the activity type *) 
begin  

 … 
end A; 
 
(* Now in the module, object or activity that is going to create the instance for the client … *) 
var a: A; s, b: string; i, d: integer; c: object; 

 
begin 

a := new A; (* Create the instance of the activity and store its reference in a variable *) 
… 
(* now send and receive tokens *) 
i := a ( “Hello”);   (* send “Hello” and receive integer token in response *) 
s := a ( );   (* receive token and convert to a string *) 
b, c, d := a ( 1, “a” ); (* send constants 1  and “a” then receive three tokens:  

    the literal string, a reference to a string and an integer *) 

9.2.2 Sending and Receiving Tokens in Server Activities 
When a client activity creates a server activity it can then interact with it using tokens according to the 
EBNF dialog defined in its protocol (type). So within the server activity the accept statement is used to 
receive tokens and the return statement is used to send tokens back to the client activity. Accepted 
tokens undergo any necessary type conversion implicitly. The accept statement is blocking and the 
return statement is non-blocking. 
 
Examples: 
activity A; (* instantiated in the role of a server *) 

var s: string; b,c,d: integer; 
begin  
  (* an activity receieving tokens from its client *) 

accept s;  (* accept a token and if necessary convert to string *) 
accept b, c, d;  (* accept three tokens and if necessary convert to integer *) 
… 

end A; 
 
and for a server activity returning tokens to its client: 
activity A; 

var s: string; b,c,d: integer; 
begin  

return s; (* Send a string *) 
return b, c, d;  (* Send three integers *) 

end A; 
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9.2.3 Using is operator to check token type 
When receiving or accepting tokens the type of the token can be checked at run time by using the is 
operator. This can help to differentiate between types and also to avoid exceptions due to type 
mismatches. For example: 

protocol P = (START_TEXT, MODIFIER1, MODIFIER2, END_TEXT, 
    P = START_TEXT { string | MODIFIER1 | MODIFIER2 } END_TEXT); 
 
activity A implements P; (* the client and server activities both are associated with this type P *) 
 var request: object; 
 
 procedure processCmd( cmd: P ); 
 end processCmd; 
 
 procedure addTextLine( s: string ); 
 end addTextLine; 
 
begin (* transfer text made up of strings and modifiers, see the protocol type for its structure (syntax)  *) 
 repeat 
  accept request;    (* receive the token *) 
  if request is P then   (* check if it is a protocol token from the enumeration in type P *) 
   processCmd( P( request ) ) 
  else       (* the token must of type string *) 
   addTextLine( string( request ) ) 
  end 
 until (request is P) & (request = P.END_TEXT); 
end A; 

9.3 Barrier Controlled Activities 
An arbitrary number of child ‘activities’ may be created from within the ‘parent’ scope of an object, 
module, procedure, activity or do…end body in combination with the modifier {barrier}. At the 
statement level this also applies to any statement sequence marked with a leading barrier modifier. 
Object (or module) bodies always act as the root of a hierarchy. The end of the ‘parent’ scope by 
definition takes the role an execution ‘barrier’ that must not be crossed until all ‘child’ activities have 
terminated.  

An independent activity needs to be declared as an (arbitrarily nested) procedure with no result that has 
the advantage of enabling access to data within the static link of the procedure-activation stack. An 
activity of this type may then be instantiated by any parent within its scope of visibility by using the 
new operator followed by the procedure name and a matching list of actual parameters. 

Example 1: Declaration and instantiation of independent activities within object scope 
object X;  
  var x: array N of X; s0, s1: S; 
   activity Q (s: S); 
      var t: T; 
   begin ... (* has access to x *) 
   end Q; 
begin { barrier } ... 
   new Q(s0); new Q(s1); 
  ... 
end X; (* acts as barrier *) 

Example 2: Independent activities within procedural scope 
procedure P (...); 
  var x: array N of X; s0, s1: S; 
  activity Q (s: S);   (* local declaration *) 
   var ... 
  begin ...     (* activity body will have access to x *) 
  end Q; 
begin { barrier }  ... 
  new Q(s0); new Q(s1); (* instantiate two activities in procedure body *) 
  ... 
end P; (* acts as barrier: both activies must terminate before it is crossed *) 

Example 3: Independent activities within wrapping barrier  
 do { barrier } 
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 get (s0, s1);   (* Snapshot values from enclosing scope *) 
  while ... do   (* instantiate pairs of activities *) 
   new Q(s0); new Q(s1); 
  get (s0, s1) 
  end  

  end (* acts as barrier: all activies must terminate before it is crossed *) 

Example 4: Independent activities within inner barrier 
 get (s0, s1);    (* Snapshot values from enclosing scope *) 

  repeat  
  do { barrier } 
    new Q(s0); new Q(s1); 
    get (s0, s1) 
   end (* acts as barrier, all activies must terminate before it is crossed *) 
 until … 

9.4 Protected Objects and Modules 
In concurrent systems there is the possibility for multiple activities to have read and write access to an 
object or module’s state space. This access sometime needs to be managed to avoid data corruption e.g. 
an activity overwriting data written by another activity before the consumer of the data has had chance 
to read it. Zonnon provides two levels of access protection: the object level and at the method level. 

9.4.1 Object-level Protection 

Objects (and modules) may optionally specify a {protected} modifier. This declares a hidden shareable 
lock associated with the instance of each object. For an activity to access the object, i.e. call a method, 
as a precondition it must ‘own’ the object-level lock. This can only be achieved by entering a protected 
object when it is unoccupied by any other activities. On acquiring the lock the activity can use the await 
statement to wait for any condition local to the object, in which case the following sequence happens: 

1. The system ‘suspends’ the execution of the activity and releases the lock. This allows 
other activities a chance to establish their own await conditions. 

2. The system monitors the awaited condition or our activity. 

When the awaited condition is established and the lock is releasable the system resumes the execution 
of the waiting activity. 

9.4.2 Method-level Protection 

A finer granularity of protection is also available at the method level. Any method within a protected 
object can be ‘shared’ by marking its declaration with the {shared} modifier at the beginning of the 
method body. When running a block of shared statements within an object only a ‘share’ of the total 
lock can be owned by the accessing activity, and any number of activities may get their own share. 
However, statements within such a shared statement sequence must not modify (write to) the object’s 
data i.e. method-level shared accesses must be ‘read-only’. This provides for efficient access to read 
object data by many activities concurrently without the overhead of each on in turn having to own the 
object-level lock. 

10 Mathematical extensions 
Mathematical extensions of Zonnon let use arrays in a more convenient way for writing applications 
where multidimensional algebra is used.  

10.1 Data structures 
For general information about arrays see 5.3.5.  
Arrays to be used in mathematical extensions should be defined with special {math} modifier.  
 

ArrayType = array "{" math "}" Length { "," Length } of Type. 

10.1.1 Expression arrays 
Expression array has the following structure: 

 
ExpressionArray = "[" ArrayFactor "]". 
ArrayFactor = ExpressionArray { "," ExpressionArray }  
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        | Expression { "," Expression }. 
 
An expression array may be used for creating arrays or assigning values to it. An expression array is 
written as a comma-separated list of expressions, enclosed by braces "[" and "]". The rank of the 
constructed array will be equal to the number of enclosed braces. The n-th expression specifies the 
value of the n-1-th array component. 
 
Example: 

var  
 a : array {math} 2, 3 of integer; 
begin  
 a := [[1, 2, 3], [4, 5, 6]]; 
  (* it is equal to:  

 a[0, 0] := 1;  
 a[0, 1] := 2; 
 a[0, 2] := 3;  
 a[1, 0] := 4;  
 a[1, 1] := 5;  
 a[1, 2] := 6;  

  *) 
 … 

10.2 Indices 
If a is a n-dimensional array ,then a subset of its elements can be defined as 

 
a[index0 , … , indexn-1]. 
 

In this context indexi (which is responsible for a subset in i-th dimension) can be either a simple index, 
a range, a numerical vector1 or a boolean vector. All array accesses are checked at run-time. If array a 
is dynamic, it has to be initialized, otherwise a NilReference exception will be thrown at run-time. 

10.2.1 Simple indices 
A simple index is an expression of integer or cardinal type which value is out of set {0, … , len(a, i) – 
1}. This kind of indices is acceptable for usual arrays too and provides a single element access. An 
attempt to use an index that doesn't lie in the set {0, … , len(a, i) – 1} causes an OutOfRange exception 
to be thrown. 
 
Example: 

var 
 b : array {math} 8,8,8 of real; 
 k : real; 
begin  
 … 
 k := b[2, 3, 1]; 
 … 

10.2.2 Ranges 
Range is a type for constants and variables which are used as indices in math arrays. The denotation for 
the name of this type is range. The only allowed operation with variables of range type is assignment 
of another range variable or a constant of range type.  
A constant range has the following structure  
 Range = [Expressions ] ".." [Expression ] [ "by" Expression ] . 
 and looks like  

[c]..[d] [by f] , 
where c  {0, … , len(a, i) – 1}, d  {0, … , len(a, i) – 1}, c ≤ d and f  . 
If c (in this context) is not specified and the constant range is used as an index ,then it is equal to 0; if c 
is not specified and the constant range is used in the right part of an assignment statement ,then a 
compile time error will occur. 
If d is not specified and the constant range is used as an index ,then it is equal to the length of the 
array's corresponding dimension reduced by one (or equal to len(a, i) – 1); if d is not specified and the 
constant range is used in the right part of an assignment statement ,then a compile time error will occur. 
If f is not specified ,then it is equal to 1. In this context c, d and f should be of integer or cardinal type.  
                                                           
1 Here vector denotes an one-dimensional array 
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Expression "c..d by f" stands for an ordered set {c + i * f : i  ; 0 ≤ i * f ≤ d – c}. An attempt to use a 
range with bounds that don't lie in the set {0, … , len(a, i) – 1} causes an OutOfRange exception to be 
thrown. 
 
Example: 

module M;  
var 
 a : array {math} 11, 10, 9, 8, 12 of integer; 
 b : array {math} *, *, *, *,* of integer; 
 r : range; 
begin   
 … 
 r := 1..10 by 3 ; 
 b := a[.. by 2, ..3, 5.., 2..7, r]; 
 (*  
  it is equal to: 
  b := a[0..len(a,0)-1 by 2, 0..3, 5..len(a,2)-1, 2..7, 1..10 by 3]; 
  
  now 
   len(b, 0) = len(a, 0)/2 + 1 = 6 
  len(b, 1) = 3 + 1 = 4 
  len(b, 2) = len(a, 2) - 5 = 4 
  len(b, 3) = 7 - 2 + 1 = 6 
  len(b, 4) = 4 
 *) 
end M. 

Note: ranges never change the dimension of an array, even if c = d. 

10.2.3 Numerical vector indices 
A numerical vector index is a vector, or a one-dimensional array, of integer or cardinal type which 
elements must lie in the set {0, … , len(a, i) – 1}. The index vector can be of any length, and the result 
array in i-th dimension will have the same length as the index vector. The corresponding elements of 
the array are selected and concatenated in the same order, as they stand in the index vector. An attempt 
to use a numerical vector index with elements that don't lie in the set {0, … , len(a, i) – 1} causes an 
OutOfRange exception to be thrown. 
 
Example: 

module M; 
 type Vector = array {math} * of real ; 
var 
 a, b : Vector; 
 a_ind : array {math} * of integer; 
begin   
 a := new Vector(8); 
 … 
 a_ind := [5, 7, 0, 5]; 
 b := a[a_ind]; 
  (* 
  it is equal to: 
  b := new Vector(4); 
  b[0]:= a[5]; 
  b[1] := a[0]; 
  b[2] := a[7]; 
  b[3] := a[5]; 
 *) 
end M. 

 
Note: numerical vector indices never change the dimension of an array, even if the length of a vector 
index is one or zero. 

10.2.4 Boolean vector indices 
A boolean vector, or a one-dimensional array, index is a vector of boolean type which must be of the 
length of i-th dimension of the array, from which elements are selected (or equal to len(a, i)). The 
length of the result vector will be the same as the number of true elements in the boolean vector. 
Values corresponding to true in the index boolean vector are selected and those corresponding to false 
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are omitted. An attempt to use a boolean vector index not of the length len(a, i) causes an 
IncompatibleSizes exception to be thrown. 
 
Example: 

module M; 
 type Vector = array {math} * of real; 
var 
 a, b : Vector; 
 a_ind : array {math} * of boolean; 
begin   
 a := new Vector(5); 
 … 
 a_ind := [true, false, false, true, true]; 
 b := a[a_ind];   
 (*  
  it is equal to: 
  b := new Vector(3); 
  b[0]:= a[0]; 
  b[1] := a[3]; 
  b[2] := a[4]; 
 *) 
end M. 

10.3 Operators 
In this section array of number denotes an array of integer, cardinal or real type, scalar denotes a 
variable or a constant of integer, cardinal or real type. 
 
General rule for the type of the resulting array elements is that it is equal to the type of the 
corresponding operation with scalars. 

10.3.1 Common operators 

10.3.1.1 Unary operators 

Operator  Operand  Result  Meaning 
+ –  array of number array of number element-wise operation 
~ array of boolean array of boolean element-wise negation 
<A>, where <A> denotes a type array of number array of number of 

type <A> 
element-wise type conversion 

Example: 
module M; 
var 
 a : array {math} * of integer; 
 b, b_neg : array {math} * of real; 
begin   
 b := [-1.3, 4.2, -7., 9.9]; 
 b_neg := -b;  (* b_neg = [1.3, -4.2, 7., -9.9] *) 
 a := integer(b);  (* a = [-1, 4, -7, 9] *) 
end M. 

10.3.1.2 Binary operators 

Operator  First operand Second operand Result Meaning 
:= array of number array of number - element-wise assignment 
:= array of number expression array - element-wise assignment 
+ – * / div mod array of number scalar array of number element-wise operation 
+ – * / div mod scalar array of number array of number element-wise operation 
+ – .* ./ div mod array of number array of number array of number element-wise operation 
+* array of number array of number scalar (pseudo)scalar product 
.= .# .< .<= .> .>= array of number scalar array of boolean element-wise comparison 
.= .# .< .<= .> .>= scalar array of numer array of boolean element-wise comparison 
.= .# .< .<= .> .>= array of number array of number array of boolean element-wise comparison 
= # < <= > >= array of number scalar boolean generalized comparison 
= # < <= > >= scalar array of numer boolean generalized comparison 
= # < <= > >= array of number array of number boolean generalized comparison 
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If in an assignment statement one array is defined with {math} modifier and another one without, the 
assignment will be implemented as element-wise copy. If both arrays were defined without {math} 
modifier, the assignment will be implemented as reference copy. 
 
Note: a +* b is the same as sum(a .* b), but the first operation doesn't require allocation of an extra 
array. For one-dimensional arrays "+*" operation is the same as "*". 
 
Example: 

module M; 
var 
 a, b, c : array {math} * of integer; 
 b, b_neg : array {math} * of real; 
 k : integer; 
 vector_bool : array {math} * of boolean; 
 var_bool : boolean; 
begin   
 a := [5, -3]; 
 b := [2, 1]; 
  
 k := 3; 
 c := a + k;    (* c = [8, 0] *) 
 c := a .* b;    (* c = [10, -3] *) 
 vector_bool := a .< b; (* vector_bool = [false, true] *) 
 vector_bool := a .< 7; (* vector_bool = [true, true] *) 
 var_bool := a < 7;  (* var_bool = true *) 
end M. 

10.3.2 Matrix operators 

10.3.2.1 Unary operators 

Operator  Operand  Result  Meaning 
! 2d array of number 2d array of number matrix transposition 

10.3.2.2 Binary operators 

Operator  First operand Second operand Result Meaning 
* 2d array of number 2d array of number 2d array of number matrix product 
* 2d array of number 1d array of number 1d array of number matrix-column product 
* 1d array of number 2d array of number 1d array of number row-matrix product 
* 1d array of number 1d array of number scalar row-column product (scalar 

product) 
/ 2d array of number 2d array of number 

(square matrix) 
2d array of number solving linear equations (or 

matrix right division) 
/ 1d array of number 2d array of number 

(square matrix) 
1d array of number solving linear equations (or 

matrix right division) 
\ 2d array of number 

(square matrix) 
2d array of number 2d array of number solving linear equations (or 

matrix left division) 
\ 2d array of number 

(square matrix) 
1d array of number 1d array of number solving linear equations (or 

matrix left division) 
 
Note: if the solution of the linear system is not the only one, then any solution will be found. If the 
solution of the linear system doesn’t exist, then NoSLUSolution exception will be thrown. 
 
Example: 

module M; 
 type Matrix = array {math} *,* of real; 
var 
 A, B, C, X : Matrix; 
begin   
 ... 
 C := !A;   (* C is transposed A *) 
 X := B / A;  (* X is the solution of X * A = B system *) 
 X := A \ B;  (* X is the solution of A * X = B system *) 
 (* 

X := B / A 
is equivalent to 
X := !(!A\!B) 

 *) 
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end M. 

10.4 Additional functions 
In this section array of number denotes an array of integer, cardinal or real type, scalar denotes a 
variable or a constant of integer, cardinal or real type. 

10.4.1 Common functions 

Function  Operand  Result  Meaning 
abs array of number array of number element-wise absolute value 
min array of number scalar minimal element in the array 
max array of number scalar maximal element in the array 
sum array of number scalar sum of array elements 
 
Example: 

module M; 
var 
 a : array {math} * of integer; 
 min_a, sum_a : integer; 
begin   
 a := [-1, 4, -7, 9, 12]; 
 min_a := min(a[1.. by 2]); (* min_a = 4 *) 
 sum_a := sum(a[..2]);  (* sum_a = -4 *) 
end M. 
 

Function  Operand 1 Operand 2 Result  Meaning 
find scalar 1d array 1d array of number indices where elements are equal 

to scalar 
Example: 

module M; 
var 
 a, b : array {math} * of integer; 
begin   
 a := [4, 6, -1, 6]; 
 b := find(integer(6), a);  (* b = [1, 3] *) 
end M. 

10.4.2 Functions for boolean arrays 

Function  Operand  Result  Meaning 
all array of boolean boolean check whether all elements are 

true 
any array of boolean boolean check whether any element is 

true 
find 1d array of boolean 1d array of number indices where elements are true 
 
Example: 

module M; 
var 
 a : array {math} * of integer; 
 b : array {math} * of boolean; 
 q : boolean; 
begin   
 b := [true, false, true]; 
 q := all(b);  (* q = false *) 
 q := any(b);  (* q = true *) 
 a := find(b);  (* a = [0, 2] *) 
end M. 

11 Program Units 
A Zonnon program may be textually partitioned into units, each of which can be compiled separately. 
The units are: the module, the definition, the implementation, and the object. It is possible to textually 
nest some of these units; the rules governing this are in section 2; note that a unit declaration cannot be 
nested within itself.  

CompilationUnit = { ProgramUnit "." }. 



   

Zonnon Language Report: Release v04 r00 b00 Saved on 28 July 2009 39

ProgramUnit = ( Module | Definition | Implementation | Object ). 

Within a program the module and object program units are implementers of functionality, whereas the 
definition and implementation units are implementees. 

11.1 The Module 
A module has a dual nature, it declares a syntactic container for logically cohesive program 
declarations and it simultaneously declares an object which is managed by the system. So the module 
provides the mechanism for the textual partitioning of a source program and also the dynamic loading 
at execution time of a part of a program, in the form of an instantiated object. 

Any number of dynamically created objects may have their lifecycles managed by a program, 
however only a single instance of each module’s object may be instantiated by the system at any given 
time. For this reason the module is also ideal for implementing abstract data types. Nesting of module 
declarations is not allowed. 

Module = module [ Modifiers ] ModuleName [ ImplementationClause ] ";" 
    [ ImportDeclaration ] 
    ModuleDeclarations 
    ( UnitBody | end ) SimpleName. 

Modifiers = "{" IdentList "}". 

ModuleDeclarations = { SimpleDeclaration | NestedUnit ";" | 
         ProcedureDeclaration | OperatorDeclaration  
         ProtocolDeclaration | ActivityDeclaration }. 

NestedUnit = ( Definition | Implementation). 

ImplementationClause = implements ImplementedDefinitionName { "," 
 ImplementedDefinitionName }. 

ImplementedDefinitionName = DefinitionName | "[" "]". 

ImportDeclaration = import Import { "," Import } ";". 

Import = ImportedName [ as ident ]. 

ImportedName = ( ModuleName  
     |   DefinitionName 
     |   ImplementationName 
     |   NamespaceName 
     |   ObjectName ). 

UnitBody = begin [ StatementSequence ] end. 

Each module has a unique name and constitutes a text that may be separately compiled as a unit. 
Optionally a module may implement one or more definitions. (See section 2). In this case the distinct 
facets of the object are defined separately in definition units which provide an abstract interface. A 
module may optionally import elements from one or more other implementations, that is, gain access to 
their scope and make possible the aggregation of their content. By using the as clause it is also possible 
to rename all entities as they are imported. This can be used to avoid name clashes and/or to simplify 
long external names to promote program readability. 

Example: 
import System.Console as S; 
… 
S.WriteLine('Hello'); (* equivalent to System.Console.WriteLine('Hello') *) 

A module may optionally contain  

• Other textual units i.e. definitions, implementations and objects 
• Simple declarations of constants, types, variables, and procedures 
• Operator declarations, for defining user defined operators 
• Activity declarations, for defining activities within the module on instantiation  

Examples:  
module Small; 
begin  
 write ('Hello World')  
end Small. 
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module BodyMassIndex; (* calculate body mass index *) 
  var height, weight, bmi: real; 
begin 
 write('weight in kg? '); read(weight); 
 write('height in m? '); read(height); 
 bmi := weight / (height * height); 
 write(' body mass index is', bmi : 6: 2); 
 if bmi < 19.0 then 
  write('too thin') 
 elsif bmi < 27.0 then 
  write('OK') 
 else 
  write('too fat') 
 end 
end BodyMassIndex. 
 
definition D; …end D. 
 
definition E; …end E. 
 
module M; 
import D, E; 
 var a: object{D, E};  (* object is one that implements both D and E *) 
 … 
end M. 

11.2 The Object 
An object type can be separately compiled and is composed of its local declarations (const, type, var, 
procedures and activities) and its body.  Nesting of object declarations is not allowed.  An object is an 
instance of such a type.  When the object is instantiated using new the statements in the object body are 
run on the objects’ new thread of execution. The functionality of the object can be accessed by other 
modules, objects and activities by calling its method procedures. It can also be accessed by activities 
external to it instantiating activities within it and then interacting with them; in this way they gain 
controlled access to the objects’ scope.  Access can also be achieved by the use of indexers; see 7.1.1. 
A record is a special form of object which has no body. 

Object = object [ Modifiers ] ObjectName ObjectDefinition SimpleName. 

ObjectDefinition = [ FormalParameters ] [ ImplementationClause ] ";" 
       [ ImportDeclaration ] 
      { SimpleDeclaration | ProcedureDeclaration | 
       ProtocolDeclaration | ActivityDeclaration } 
       ( UnitBody | end ). 

Record = record ObjectName { VariableDeclaration ";" } end SimpleName. 

In order to avoid the notion of free-floating types the standalone object declaration is equivalent to the 
type being declared in an anonymous module. So the declaration of the form: 

object T; 
… 
end T. 

is shorthand for: 

module ; 
   type T = object … end; 
end . 

The use of this form is restricted to the ‘topmost’ level of declarations. 

Optionally an object may implement one or more definitions. (See section 2). In this case the distinct 
facets of the object are defined separately in definition units which provide an abstract interface. Also 
an object may import elements from a module or implementation; that is, gain access to their scope. By 
using the as clause it is also possible to rename all entities as they are imported. This can be used to 
avoid name clashes and/or to simplify long external names to promote readability of the programming 
within the object. 

Note that an object importing a definition D to make use of the implementation D must explicitly 
aggregate it by importing D, see sections 10.2.3 and 10.4. 
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11.2.1 Inheritance and Multiple Inheritance 

There are two kinds of inheritance supported in Zonnon: refinement and aggregation. Refinement is the 
inheritance of an interface definition whilst aggregation is the inheritance (reuse) of (fragments of) an 
existing implementation. All object declarations that do not explicitly refine some other object are 
deemed to refine object. Thus all objects (directly or indirectly) refine object. If an object B refines an 
object A, then B is said to be ‘derived from’ A; for further details see section 10.2.3. 

Multiple inheritance is characterized by the possibility to refine from multiple definitions and/or to 
aggregate from multiple implementations. In Zonnon there is no ambiguity associated with multiple 
inheritance, due to the use of qualified identifiers for naming (see 5.1). 

11.2.2 Polymorphism 

Polymorphism involves the selection of the appropriate method to invoke at execution time, depending 
on the type of the variable that it is to be acted upon. There are two concepts: 

1) an object of type T is required here, and 

2) an object is required here that implements an interface definition D 

Zonnon emphasizes the second more general concept (2 above) and goes further by allowing the 
specification of multiple definitions (so called ‘facets’ of the object’s overall interface) and so in this 
context polymorphism means ‘an object is required here that implements D1 and D2 and …’. 

11.2.3 Activities 

Activities may be declared as types within objects. They may also be instantiated within the object 
itself or by another activity either within the same object or by an activity in another object. See section 
9 for details of activities and objects. 

11.3 The Definition 
A definition defines a distinct facet of an object in terms of an abstract interface comprising field 
declarations and method signatures (but not method bodies). Definitions can form a network of related 
types, not just a hierarchy. The dependencies between definitions may not be cyclic. 

Definition = definition [ Modifiers ] DefinitionName [ RefinementClause ] ";" 
        [ ImportDeclaration ] 
        DefinitionDeclarations 
     end SimpleName. 

RefinementClause = refines DefinitionName. 

DefinitionDeclarations = { SimpleDeclaration 
          | { ProcedureHeading “;” } 
          | ProtocolDeclaration }. 

A definition has a unique name and optionally refines another definition, presenting a new facet of an 
object, possibly adding new fields and behavior and thus forming a specialized form of the original 
definition.  

It may also optionally import elements from one or more implementations, that is gain access to 
their scope and make possible the literal aggregation of their content. By using the as clause it is also 
possible to rename all entities as they are imported. This can be used to avoid name clashes and/or to 
simplify long external names to promote readability of the programming within the object. The 
modifiers public and private can be used to declare the visibility of the contents of a definition. If no 
modifier is present then the default is public. The definition can contain a set of declarations of 
constant, types and variables and also method procedure headings (signatures), but not the bodies of 
procedures. 

Examples:  
definition Graphical; (* features of all graphical objects *) 
  var x, y: integer; (* object’s position *) 
 
 procedure MoveTo (newX, newY: integer); 
 (* post: (x = newX) & (y = newY) *) 
 
 procedure MoveBy (dx, dy: integer); 
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 procedure Draw; 
end Graphical. 
 
definition Rectangle refines Graphical; (* features specific to rectangle objects *) 
  var width, height: integer; 
 
 procedure Area ( ): integer; 
end Rectangle. 
 
implementation Graphical; (* see example in section 10.4 *) 
 
 … 
end Graphical. 
 
object {ref} Box implements Rectangle; 
 procedure Area ( ): integer; 
 begin 
  return width * height 
 end Area; 
end Box. 

11.4 The Implementation 
An implementation defines an aggregate of field and method implementation fragments intended for re-
use when incorporated into a program via one or more object templates. An implementation has a 
unique name unless it has the same name as its corresponding definition. It may optionally import 
elements from one or more other implementations, that is, gain access to their scope and make possible 
the aggregation of their content. By using the as clause it is also possible to rename all entities as they 
are imported. This can be used to avoid name clashes and/or to simplify long external names to 
promote readability of the programming within the object. Nesting of implementation declarations is 
not allowed. 

The modifiers public and private can be used to declare the visibility of the contents of an 
implementation. If no modifier is present then the default is public. 

An object implementing a definition is required to implement all of its methods unless the definition 
has a corresponding implementation which is imported to the object. 

Implementation = implementation [ Modifiers ] ImplementationName ";" 
         [ ImportDeclaration ] 
         Declarations 
         ( UnitBody | end ) SimpleName. 

UnitBody = begin [ StatementSequence ] end. 

The implementation can contain a set of declarations of constants, types and variables and also method 
procedure headings and bodies. These bodies ultimately form the concrete implementations of the 
methods of objects. 

Type extension, as introduced in Oberon [Oberon] can easily be emulated. If Tf is a type consisting 
only of fields then a new type T can “inherit” the fields of Tf by implementing it. Examples:  

implementation Graphical; (* an implementation of the definition Graphical *) 
 (* X and Y are declared in the definition, see section 10.3 above *) 
 procedure MoveTo (newX, newY: integer); 
 begin 
  x := newX; y := newY 
 end MoveTo; 
 
 procedure MoveBy (dx, dy: integer); 
 begin  
  x := x + dx; y := y + dy 
 end MoveBy; 
 
end Graphical. 

Before an object is instantiated each implementation that it implements is itself aggregated as a whole 
and initialized. Furthermore it is possible for one implementation unit to implement part of another 
implementation unit. This makes it possible to encapsulate program fragments a hierarchy of 
implementations, for instance to enable their reuse.  
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12 Reflection 
It is sometimes desirable to access information about the constructs and their attributes (e.g. modifiers) 
of a Zonnon source program. To make this possible the compiler can produce an XML definition of the 
salient features of each separately compiled item of source text. This can later be accessed by a run-
time program using the predefined procedure getAttribute. The construct parameter is the name of any 
Zonnon entity, including program units, types, constants, variables, objects, procedures, parameters, 
blocks and operators. 

The attribute values may be accessed using two forms of getAttribute: 
getAttribute(construct, var string);  

or 
string := getAttribute (construct); 

The information is returned in a single string, possibly containing several attribute values. 

12.1 XML Schema 
The following list defines the XML schema used to describe the information reflected from the 
program with typical examples provided in each case:  

12.1.1 Access Rights 
<access>public</access> 
<access>private</access> 

12.1.2 Objects 
<object>ref</object> 
<object>value</object> 

12.1.3 Procedure Parameters (parameter passing mode): 
<parameter>var</parameter> 
<parameter>value</parameter> 

12.1.4 Procedure and Variable Immutability: 
<immutable>open</immutable> 
<immutable>sealed</immutable> 

12.1.5 Operator Priority 
<priority>3</priority> 

12.1.6 Blocks and Procedure Bodies 
<behavior>passive</behavior> //neither locked nor concurrent 
<behavior>locked</behavior> 
<behavior>concurrent</behavior> 

12.1.7 Type, Variable and Constant Widths 
<width>64</width> 

12.1.8 Enumeration Cardinality 
<ordinal>7</ordinal> 

12.2 Example: program reflection and information 
When the following program runs 

definition d; 
 procedure p1 (var x: integer {32}); 
 procedure p2 { sealed }; 
 var v: integer {64}; 
 type T = ( one, two, three ); 
end d. 
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object o implements d; 
 procedure p1 (var x: integer {32}) implements d.p1; 
 var attrs1, attrs2, attrs3, attrs4, attrs5, attrs6: string; 
 begin { locked } 
  attrs1 := getAttribute(d); 
  attrs2 := getAttribute(d.v); 
  attrs3 := getAttribute(p1.x); 
  attrs4 := getAttribute(d.T); 
  attrs5 := getAttribute(p1); 
  attrs6 := getAttribute(d.p2); 
 end p1; 
begin 
end o. 

it reveals its form via the reflection information as follows: 
attrs1(d) contains: 
 "<attributes> <access>public</access> </attributes>" 

attrs2(d.v) contains: 
"<attributes> <access>public</access> <implement>open</implement> 
<width>64</width> </attributes>" 

attrs3(p1.x) contains: 
 "<attributes> <parameter>var</parameter> <width>32</width> </attributes>" 

attrs4(d.T) contains: 

 "<attributes> <access>public</access> <width>32</width> <ordinal>3</ordinal> 
 </attributes>" 

attrs5(p1) contains: 
 "<attributes> <access>public</access> <implement>sealed</implement> 
 <behavior>locked</behavior> </attributes>" 

attrs6(d.p2) contains: 
 "<attributes> <access>public</access> <implement>sealed</implement> 
 <behavior>passive</behavior> </attributes>" 

13 Definition of Terminology 

13.1 Numeric Types 
The numeric types are: 

• Integer types integer or integer{width} 

• Cardinal types cardinal or cardinal{width} 

• Real types real or real{width}  

13.2 Same Types 
Two variables a and b with types Ta and Tb are of the same type if 

• Ta and Tb are both denoted by the same type identifier, or 

• Ta is declared to equal Tb in a type declaration of the form Ta = Tb, or 

• a and b appear in the same identifier list in a variable, object field, or formal parameter 
declaration and are not open arrays. 

13.3 Equal Types 
Two types Ta and Tb are equal if 

• Ta and Tb are the same type, or 
• Ta and Tb are open array types with equal element types, or 
• Ta and Tb are procedure types whose formal parameter lists match. 
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13.4 Assignment Compatible 
An expression e of type Te is assignment compatible with a variable v of type Tv if one of the 
following conditions hold: 

• Te and Tv are the same type; 
• Within each of the type families 

integer, cardinal, real, set, char 
an expression of type Te may be assigned to a variable v whose type Tv is large enough 
(defined by its width) to hold the set of values of type Te; 

• Tv is a procedure type and e is nil; 
• Tv is a procedure type and e is the name of a procedure whose formal parameters match 

the signature of Tv 

13.5 Array Compatible  
An actual parameter a of type Ta is array compatible with a formal parameter f of type Tf if 

• Tf and Ta are the same type, or 
• Tf is an open array, Ta is any array, and their element types are array compatible 

13.6 Compatible for Expressions and Operator Overloading 
For a given operator, the types of its operands are expression compatible if they conform to the 
following table (which shows also the result type of the expression), for example: op1 > op2. The table 
also implicitly defines the sets of operand combinations that are supported for operator overloading. 

Operator  First operand (op1) Second operand (op2) Result type 
+ – * ** integer{m} integer{n} max of integer{m} and integer{n} 
+ – * ** cardinal{m} cardinal{n} max of cardinal{m} and 

cardinal{n} 
+ – * ** real{m} real{n} max of real{m} and real{n} 
/ real{m} real{n} pre: op2 # 0 max of real{m} and real{n} 
+ – * set{m} set{n} max of set{m} and set{n} 
div mod integer{m} integer{n} pre: op2 # 0 max of integer{m} and integer{n} 
div mod cardinal{m} cardinal{m} max of cardinal{m} and 

cardinal{n} 
or & ~ boolean boolean boolean 
= # < <= > >= integer{m} integer{n} boolean 
= # < <= > >= cardinal{m} cardinal{n} boolean 
= # < <= > >= real{m} real{n} boolean 
= # < <= > >= enumeration T enumeration T boolean 
= # < <= > >= char char boolean 
= # < <= > >= character array, character array boolean 
= # < <= > >= string string boolean 
= # boolean boolean boolean 
= # set set boolean 
= # procedure type T  procedure type T boolean 
= # nil nil boolean 
in integer set boolean 
implements object definition boolean 
is object object type boolean 

13.7 Matching Formal Parameter Lists 
Two formal parameter lists match if 

• they have the same number of parameters, and 
• they have either the same function result type or none, and 
• parameters at corresponding positions have equal types, and 
• parameters at corresponding positions are both either value or variable parameters. 



   

Zonnon Language Report: Release v04 r00 b00 Saved on 28 July 2009 46

14 Predefined Procedures  
The following table lists the predefined procedures. Some are generic procedures, i.e. they apply to 
several types of operands. Within the specifications v stands for a variable, x and n for expressions, and 
T for a type. The names of the predefined procedures can also be written entirely in upper-case letters. 

 
Name Argument(s) type(s) Result type Purpose 
abs(x) integer, cardinal or real type of x absolute value of x 
assert(b) b: boolean none if ~b terminate 
assert(b, n) b: boolean; 

n: integer or cardinal 
none if ~b terminate, report n to environment 

cap(x) x: char char  corresponding capital letter 
precondition: x is a letter 

copy(x, v) x: string; v: character array none v := x 
copy(v, x) x: string; v: character array none x := v 
copyvalue(v) v: ref object value object dereference an object 
dec(v) v: integer, cardinal or 

enumeration type 
none v := v – 1 

dec(v, n) v: integer, cardinal or 
enumeration type 
n: integer or cardinal type 

none v := v – n 

excl(v, x) v: set; 
x: integer or cardinal type 

none v := v – {x} 

halt(n) n: integer or cardinal const none terminate program execution 
inc(v) v: integer, cardinal or 

enumeration  
none v := v + 1 

inc(v, n) v: integer, cardinal or 
enumeration  
n: integer or cardinal type 

none v := v + n 

incl(v, x) v: set;  
x: integer or cardinal type 

none v := v + {x} 

len(v, n) v:array;  
n: integer or cardinal const 

integer length of v in dimension n  
(first dimension = 0) 

len(v) v: array integer equivalent to len(v, 0) 
len(v) v: string integer number of characters in string v (see 5.3.6) 
low(x) x: char char corresponding lower-case letter  

precondition: x is a letter 
max(T) integer integer maximum value of type integer{w} 
max(T) cardinal cardinal maximum value of type cardinal{w} 
max(T) enumeration enumeration maximum value of the enumeration 
max(T) char{w} integer maximum character 
max(T) real{w} real maximum value of type real{w} 
max(T) set{w} integer maximum element of a set{w} 
min(T) integer integer mininmum value of type integer{w} 
min(T) enumeration enumeration minimum value of the enumeration 
min(T) char{w} integer minimum character 
min(T) real{w} real minimum value of type real{w}  
min(T) set{w} integer 0 
odd(x) x: integer boolean x mod 2 = 1 
pred(x) x: integer integer x – 1, pre: x # min(integer) 
pred(x) x: enumeration type of x predecessor enumeration value,  

pre: x # min(enumeration) 
pred(x) x: char char predecessor char, pre: x # min(char) 
reason none string returns system information on current 

exception 
size(T) any type integer number of bytes required by T 
succ(x) x: integer or cardinal integer x + 1, pre: x # max(integer) 
succ(x) x: enumeration type of x successor enumeration value, 

pre: x # max(enumeration) 
succ(x) x: char char successor char, pre: x not max(char) 

In assert(x, n) and halt(n), the interpretation of n is implementation specific. (See [Compiler]). 

15 Input and Output Procedures  
The language includes built-in features for simple textual input and output. Conceptually, reading and 
writing corresponds to receiving and sending tokens from and to the predefined activities standard 
input and standard output respectively.  

For convenience, predefined procedures in a similar style to Pascal are provided for reading and 
writing text. The procedures for inputting text are read and readln and for outputting are write and 
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writeln. All input and output is to texts which are implicitly assumed to be represented as lines of 
characters delimited by end of line markers. 

15.1 Parameters and special syntax 
The procedures are used with a non-standard syntax for their parameter lists. This allows for a variable 
number of parameters which may be of various data types. Parameters of type char require no data type 
conversion, however for other types such as integer, real, etc the data transfer includes an implicit data 
type conversion.  

15.2 Input Procedures 

15.2.1 The read procedure 

The form of the read procedure is  
read (v1, …, vn)  

It may have one or more parameters, each of which is a value of some basic data type. If v is a value of 
type char then read(v) transfers the next character from the input text to v. If v is a value of type 
integer, cardinal or real then read(v) implies the reading of a sequence of characters from the input 
text and assignment of that number to v. Preceding blanks and line markers are skipped and discarded. 

15.2.2 The readln procedure 

The form of the readln procedure is  
readln(v1, …, vn) 

readln has the same functionality as read except that after reading vn all remaining characters on the 
line are skipped up to and including the next end of line marker. 

15.3 Output Procedures 

15.3.1 The write procedure 
The form of the write procedure is 

write (p1, …, pn) 

It may have one or more parameters, each of which has the form  
e : e:m  or  e:m:n 

Where e represents the value to be output and m and n are field-width specifiers. If the value of e 
requires less than m characters for its representation then blanks (spaces) are output to ensure that a 
total of exactly m characters are written. If m is omitted an implementation-defined default value will 
be assumed. The form e:m:n is only applicable to numbers of type real. (See below). 

The write procedure parameters can be of type char, string, boolean, integer, cardinal and real.  
• If e is of type char then write (e : m) writes out m – 1 spaces followed by the character 

contained in e. If m is omitted then only the character is written. 
• If e is of type string then write (e : m) writes the characters of the string, preceded by blanks to 

ensure a total field width of m. 
• If e is of type boolean then either the word true or false is written, preceded by blanks to 

ensure a total field width of m. 
• If e is of type integer or cardinal then the decimal representation of the number e will be 

written, preceded by blanks to ensure a total width of m. 
• If e is of type real then the decimal representation of the number e will be written, preceded 

by blanks to ensure a total width of m. If the parameter n is missing a floating point 
representation consisting of a coefficient and a scale factor will be written. If n is present then 
a fixed-point representation with n digits after the decimal point is provided. 

15.3.2 The writeln procedure 
The form of the writeln procedure is:  

writeln (v1, …, vn) 
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writeln has the same functionality as write except that after writing vn an end of line marker is written. 

15.3.3 Default values of widths in write and writeln 

The default field width for write and writeln procedure parameters depends on the type of the 
parameter, the default widths are: 

• char default field width 1 
• string default field width is the length of the string 
• boolean default field width is 6 
• integer default field width is 20 
• cardinal default field width is 20 
• real default field width is 20 

16 Example Module Strings 
This is an example of a library module which builds on the minimal string features built into Zonnon. 
See section 5.3.6. In this example ‘zonnon’ is the namespace, the standard implementation of Strings is 
specified by the definition zonnon.Strings and its new implementation is implemented in the module 
zonnon.NativeStrings . 

16.1 Zonnon Strings definition 
  
definition {public} zonnon.Strings; 
 (*The definition of standard Zonnon strings *) 
 
 (* length: return the length of the given string this *) 
 procedure length  (this : string) : integer;  
 
 (* substring: returns the substring of  the given string this from position start and of length count  *)  
 procedure substring (this : string; start, count : integer) : string; 
 
 (* insert: returns the string with the whole string this inserted into the string s starting at position start  *)  
 procedure insert  (this : string; start : integer; s : string) : string; 
 
 (* remove:  returns the string with count characters removed from the string this  at position start *) 
 procedure remove  (this : string; start, count : integer) : string; 
 
 (* replace: returns the string with with all fromc characters replaced by toc characters in string this *) 
 procedure replace  (this : string; fromc, toc : char) : string; 
 
 (* startsWith: returns true is the string this is the initial substring of string s , otherwise false *) 
 procedure startsWith (this : string; s : string) : boolean; 
 
 (* endsWith: returns true is the string this is the final substring of string s , otherwise false *) 
 procedure endsWith (this : string; s : string) : boolean; 
 
 (* indexOf: returns the first located position of character c in string this *) 
 procedure indexOf  (this : string; c : char) : integer; 
 
 (* indexOf: returns the last located position of character c in string this *) 
 procedure lastIndexOf (this : string; c : char) : integer; 
 
 (* toUpper: returns the string of string this with all characters converted to upper case *) 
 procedure toUpper  (this : string) : string; 
 
  (* toLower: returns the string of string this with all characters converted to lower case *) 
 procedure toLower  (this : string) : string; 
 
end Strings. 
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16.2 Zonnon Strings implementation by native Zonnon character arrays 
 
(*The implementation of standard Zonnon strings definition. Module NativeStrings *) 
(* implements standard Zonnon strings definition by character arrays of Zonnon language *) 
(* VR October 2005 *) 
 
module {public} zonnon.NativeStrings implements zonnon.Strings; 
 
 type {private} CharArray = array * of char; 
 
 (* length: return the length of the given string this *) 
 procedure {public} length(this : string) : integer implements zonnon.Strings.length; 
 begin 
  return len(this)  
 end len; 
 
 (* substring: returns the substring of  the given string this from position start and of length count  *) 
 procedure {public} substring(this : string; start, count : integer) : string implements zonnon.Strings.substring; 
 var k : integer;   
  result : string; 
  source, target : CharArray; 
 begin  
  source := new CharArray( len(this) ); 
  target := new CharArray(count); 

  copy(this, source); 
  for k := 0 to count-1 do 
   target[k] := source[start + k] 
  end; 
  copy(target, result); 
  return result 
 end substring; 
 
(* insert: returns the string with the whole string this inserted into the string s starting at position start *) 
procedure {public} insert(this : string; start : integer; inserted : string) : string implements zonnon.Strings.insert; 
 var k, i : integer;  
  result : string; 
  source, target : CharArray; 
  sourceL, insertL : integer; 
begin 
 sourceL := len(this); 
 insertL := len(inserted); 
 source := new CharArray(sourceL); 
 target := new CharArray(sourceL + insertL); 
 copy(this, source); 
 i := 0; 
 for k := 0  to start-1 do target[i] := source[k]; inc(i) end; 
 for k := 0  to insertL-1 do target[i] := inserted[k]; inc(i) end; 
 for k := start to sourceL-1 do target[i] :=  source[k]; inc(i) end; 
 copy(target, result); 
 return result 
end insert; 
 
(* remove:  returns the string with count characters removed from the string this  at position start *) 
procedure {public} remove(this : string; start, count : integer) : string implements zonnon.Strings.remove; 
var  result : string; 
 source, target : CharArray; 
 k, si, ti, N, N1, N2 : integer; 
begin 
 N := len(this); 
 source := new CharArray(N); 
 target := new CharArray(N - count); 
 copy(this, source); 
 N1 := start; 
 N2 := N - N1 - count; 
 si := 0; ti := 0; 
 for k := 1 to N1 do target[ti] := source[si]; inc(si); inc(ti)  
 end; 
 inc(si, count); 
 for k := 1 to N2 do target[ti] := source[si]; inc(si); inc(ti)  
 end; 
 copy(target, result); 
 return result 
end remove; 
 
(* replace: returns the string with with all fromc characters replaced by toc characters in string this *) 
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procedure {public} replace(this : string; froms, tos : char) : string implements zonnon.Strings.replace; 
 var k, n : integer; result : string; 
  source, target : CharArray; 
begin 
 n := len(this); 
 source := new CharArray(n); 
 target := new CharArray(n); 
 copy(this, source); 
 for k := 0 to n-1 do  
  if source[k] = froms 
  then target[k] := tos 
  else target[k] := source[k]  
  end; 
 end; 
 copy(target, result); 
 return result 
end replace; 
 
(* toUpper: returns the string of string this with all characters converted to upper case *) 
procedure {public} toUpper(this : string) : string implements zonnon.Strings.toUpper; 
 var c : char; 
  ia, i, iz, k, n : integer; 
  result : string; 
  source, target : CharArray; 
begin 
 n := len(this); 
 source := new CharArray(n); 
 target := new CharArray(n); 
 ia := integer('a'); 
 iz := integer('z'); 
 copy(this, source); 
 for k := 0 to n-1 do 
  c := source[k]; 
  i := integer(c);  
  if (i < ia) or (iz < i)  
  then target[k] := c   
  else target[k] := char(i-32) 
  end 
 end; 
 copy(target, result); 
 return result 
end toUpper; 
 
(* toLower: returns the string of string this with all characters converted to lower case *) 
procedure {public} toLower(this : string) : string implements zonnon.Strings.toLower; 
 var c : char; 
 iA, i, iZ, k, n : integer; 
 result : string; 
 source, target : CharArray; 
begin 
 n := len(this); 
 source := new CharArray(n); 
 target := new CharArray(n); 
 iA := integer('A'); 
 iZ := integer('Z'); 
 copy(this, source); 
 for k := 0 to n-1 do 
  c := source[k]; 
  i := integer(c);  
  if (i < iA) or (iZ < i)  
  then target[k] := c  
  else target[k] := char(i+32) 
  end 
 end; 
 copy(target, result); 
 return result 
end toLower; 
 
(* startsWith: returns true is the string this is the initial substring of string s , otherwise false *) 
procedure {public} startsWith(this : string; s : string) : boolean implements zonnon.Strings.startsWith; 
 var k, n : integer; 
begin 
 n := len(s); 
 if len(this) < n then return false  
 end; 
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 for k := 0 to n-1 do 
if s[k] # this[k] then return false 
end 

 end; 
 
 return true 
end startsWith; 
 
(* endsWith: returns true is the string this is the final substring of string s , otherwise false *) 
procedure {public} endsWith(this : string; s : string) : boolean implements zonnon.Strings.endsWith; 
 var  k, n, start : integer; 
begin 
 n := len(s); 
 start := len(this) - n; 
 if start < 0 then return false end; 
 for k := 0 to n-1 do 
  if s[k] # this[start + k] then return false  
  end 
 end; 
 return true 
end endsWith; 
 
(* indexOf: returns the first located position of character c in string this *) 
procedure {public} indexOf(this : string; c : char) : integer implements zonnon.Strings.indexOf; 
 var  k, n : integer;  
begin 
 n := len(this)-1; 
 for k := 0 to n do 

if this[k] = c then return k  
end 

 end; 
 return -1 
end indexOf; 
 
(* indexOf: returns the last located position of character c in string this *) 
procedure {public} lastIndexOf(this : string; c : char) : integer implements zonnon.Strings.lastIndexOf; 
 var k, n : integer;  
begin 
 n := len(this)-1; 
 for k := 0 to n do 

 if this[n-k] = c then return n-k 
end 

 end; 
 return -1 
end indexOf; 
 

end (* of Module *) NativeStrings .  
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17 Example of Protocol Controlled Activities and Dialog 
Here is a longer example illustrating how a protocol can be used to control the dialogue between 
activities.  Within the EBNF protocol specifications the communication of an item from the server to 
the client is prefixed by a ‘?’.  The example implements the well known Simple Mail Transmission 
Protocol SMTP used for email delivery. 

definition {public} MailProtocols; 
 

(*  This provides the definition of  the SMTP protocol to control the interaction between the activities*) 
protocol SMTP = ( (* defines the tokens used in the EBNF of the dialog *) 
  SMTP_SERVER_READY, SERVICE_NOT_AVAILABLE, HELO,  
  OK, MAIL_FROM, RCPT_TO,  
  RCPT_REJECTED,  DATA, START_MAIL_INPUT,  
  END, QUIT, BYE,  
  msg_body = DATA ?START_MAIL_INPUT { string } END ?OK, 
  session = HELO string ?OK  {mail_from rcpt_to {rcpt_to} msg_body}, 
  se_end = QUIT ?BYE, 
  mail_from = MAIL_FROM string ?OK, 
  rcpt_to = RCPT_TO string ( ?OK | ?RCPT_REJECTED  

  SMPT = ?SMTP_SEVER_READY [session] se_end | ?SERVICE_NOT_AVAILABLE,); 
end MailProtcols. 
 
(* SMTP  Mail Server activity which implements the server side of the protocol *) 
object MailServer implements MailProtocols; 
 activity SendMail implements MailProtocols.SMTP; (* associates the activity with the protocol type *) 
   var request: SMTP; any_request: object; 
     host, mfrom, mto, mtextline: string; 
  begin 
  return SMTP.SMTP_SERVER_READY; 
  accept request;  
  if request = SMTP.HELO then (* If not HELO then request is QUIT *) 
   accept host; 
   return OK; (* Confirm that client is accepted *) 
   (* Sending a message *) 
   loop 
    accept request; 
    if request = SMTP.QUIT then exit end; 
    (* Protocol guarantees that request = SMTP.MAIL_FROM *) 
    accept mfrom; (* Sender e-mail *) 
    return OK; (* Confirm that sender is accepted *) 
 
    (*** New mail - clearing recipients list ***) 
    accept request; 
    while request = SMTP.RCPT_TO do 
     accept mto; (* One more recipient *) 
     if (* checking the recipient is *) true then 
      return SMTP.OK (* Recipient accepted *) 
      (* Adding mto to the rcpt list *) 
     else 
      return SMTP.RCPT_REJECTED (* Recipient rejected *) 
     end;  
     accept request 
    end; (* Request can be SMTP.DATA or SMTP.QUIT *) 
    if request = SMTP.QUIT then exit end; 
 
    (* Protocol guarantees that request = SMTP.DATA *) 
    return SMTP.START_MAIL_INPUT;  
    accept any_request; 
    while any_request is string do 
     mtextline := string( request ); (* One more text line  *) 
     accept any_request; 
    end; (* while *) (* any_request is SMTP.END *) 
    (* Accept the lines of message until all received *) 
    return OK 
    (* Putting the message to the queue *) 
   end (* loop *) 
   return SMTP.BYE 
   end (* of activity *) SendMail; 
 
end (* of object *) MailServer. 
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(* SMTP  MailClient activity which implements the client side of the protocol *) 
 
object {public} MailClient; 
 var {public} server: MailServer; 
 
 procedure {public} Configure(server: MailServer) 
 begin 
  self.server := server; 
 end Configure; 
 
 procedure {public} SendMail; 
  var smtp: activity { MailProtocols.SMTP };  
   answer: MailProtocols.SMTP;  
   i: integer; 
 begin 
  smtp := new server.SendMail; (* new dialog with the server *) 
  answer := smtp();  
  if  answer = MailProtocols.SMTP.SMTP_SERVER_READY  then 
   answer := smtp( MailProtocols.SMTP.HELO, "www.roman.nnov.ru" ); 
   if answer = MailProtocols.SMTP.OK then 
    for (* each mail in outbox *) i := 1 to 1 do 
     answer := smtp( MailProtocols.SMTP.MAIL_FROM, "roman.mitin@inf.ethz.ch" ); 
     if answer = MailProtocols.SMTP.OK then 
      answer := smtp( MailProtocols.SMTP.RCPT_TO, "zueff@inf.ethz.ch" ); 
      if answer = MailProtocols.SMTP.OK then 
       answer := smtp( MailProtocols.SMTP.DATA ); 
       if answer = MailProtocols.SMTP.START_MAIL_INPUT then 
        smtp( "Hi!" ); 
        smtp( "It works!" ); 
        answer := smtp( MailProtocols.SMTP.END ); 
        if answer = MailProtocols.SMTP.OK then 
         answer := smtp( MailProtocols.SMTP.QUIT ) 
         if answer = MailProtocols.SMTP.BYE then 
         (* Session closed *) 
         end 
        (* the following else parts would provide relevant error recovery *) 
        else (* SMTP.OK missing, out of sequence *) 
        end 
       else (* No invitation to input data *) 
       end 
      else (* Recipient has been rejected *) 
      end 
     else (* Sender has been rejected *) 
     end 
    end (* for each mail in mailbox *) 
   else (* Host has been rejected *) 
   end 
  else (* Can't connect, server not ready *) 
  end 
 end SendMail; 
 
 procedure {public} Synchronise; 
 begin 
  activity; begin SendMail end; (* Run in a new thread *) 
  (* Other synchronisation tasks such as GetMail *) 
 end Synchronise; 
 
begin (* object MailClient *) 
 smtp := nil; (* initialisation code on instantiation *) 
end (* of object *) MailClient. 
 
(* This is the loadable module called User that it the initial root of program execution *) 
(* It creates the mail client and server objects and then configures then to communicate with each other *) 
module User; 
 var  server: MailServer;  (* declare variables for referencing each object *) 
   client: MailClient; 
begin (* these statements are run when the module is loaded into memory and initialised *) 
 server := new MailServer; (* instantiate the MailServer object *) 
 client := new MailClient; (* instantiate the MailClient object *) 
 client.Configure( server ); (* call method in client object to link it with the server *) 
     client.Synchronise( );  (* call method in client object to initially synchronise the protocol *) 
end User . 
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18 Syntax 
// Zonnon Syntax in EBNF 
 
// 1. Program and program units 
CompilationUnit = { ProgramUnit "." }. 
ProgramUnit = ( Module | Definition | Implementation | Object). 
 
// 2. Modules 
Module = module [ Modifiers ] ModuleName [ ImplementationClause ] ";" 
    [ ImportDeclaration ] 
    ModuleDeclarations 
    ( UnitBody | end ) SimpleName. 
Modifiers = "{" IdentList "}". 
ModuleDeclarations = { SimpleDeclaration | NestedUnit ";" | 
         ProcedureDeclaration | OperatorDeclaration  
         ProtocolDeclaration | ActivityDeclaration }. 
NestedUnit = ( Definition | Implementation ). 
ImplementationClause = implements ImplementedDefinitionName { "," 
ImplementedDefinitionName }. 
ImplementedDefinitionName = DefinitionName | "[" "]". 
ImportDeclaration = import Import { "," Import } ";". 
Import = ImportedName [ as ident ]. 
ImportedName = ( ModuleName  
       | DefinitionName 
       | ImplementationName 
       | NamespaceName 
       | ObjectName ). 
UnitBody = begin [ StatementSequence ] end. 
 
// 3. Definitions 
Definition = definition [ Modifiers ] DefinitionName [ RefinementClause ] ";" 
        [ ImportDeclaration ] 
        DefinitionDeclarations 
     end SimpleName. 
RefinementClause = refines DefinitionName. 
DefinitionDeclarations = { SimpleDeclaration 
          | { ProcedureHeading “;” } 
          | ProtocolDeclaration }. 
ProtocolDeclaration = protocol ProtocolName "=" "(" ProtocolSpecification ")" ";". 
ProtocolSpecification = [ Alphabet "," ] Grammar 
                      | Alphabet [ "," Grammar ]. 
Alphabet = TerminalSymbol { "," TerminalSymbol }. 
Grammar = Production { "," Production }. 

Production = ProductionName "=" Alternative. 
Alternative = ItemSequence { "|" ItemSequence }. 
ItemSequence = Item { Item }. 
Item = ( ["?"] TerminalSymbol | ProductionName | TypeName | 
         Alternative | Group | Optional | Repetition). 
Group = "(" ItemSequence ")". 
Optional = "[" ItemSequence "]". 
Repetition = "{" ItemSequence "}". 
TerminalSymbol = number | ident | charConstant. 
ProductionName = ident. 
 
// 4. Implementations 
Implementation = implementation [ Modifiers ] ImplementationName ";" 
         [ ImportDeclaration ] 
         Declarations 
         ( UnitBody | end ) SimpleName. 
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// 5. Objects 
Object = object [ Modifiers ] ObjectName ObjectDefinition SimpleName. 
ObjectDefinition = [ FormalParameters ] [ ImplementationClause ] ";" 
        [ ImportDeclaration ] 
        { SimpleDeclaration | ProcedureDeclaration | 
          ProtocolDeclaration | ActivityDeclaration } 
        ( UnitBody | end ). 

ActivityDeclaration = activity ActivityName [ FormalParameters ] [ProcImplementationClause]";" 
         Declarations 
         ( UnitBody | end ) SimpleName. 
 
// 6. Declarations 
Declarations = { SimpleDeclaration | ProcedureDeclaration }. 
SimpleDeclaration = ( const [ Modifiers ] { ConstantDeclaration ";" } 
       | type  [ Modifiers ] { TypeDeclaration ";" } 
       | var   [ Modifiers ] { VariableDeclaration ";" } 
       ). 
ConstantDeclaration = ident "=" ConstExpression. 
ConstExpression = Expression. 
TypeDeclaration = ident "=" Type. 
VariableDeclaration = IdentList ":" Type. 
 
// 7. Types 
Type = (   TypeName [ "{" Width "}" ] | EnumType | ArrayType | ProcedureType 
   | InterfaceType | ObjectType | RecordType | ProtocolType ). 
Width = ConstExpression. 
ArrayType = array [ "{" math "}" ] Length { "," Length } of Type. 
Length = ( ConstExpression | "*" ). 
EnumType = "(" IdentList ")". 
ProcedureType = procedure [ ProcedureTypeFormals ]. 
ProcedureTypeFormals = "(" [ PTFSection { ";" PTFSection } ] ")" [ ":" FormalType ]. 
PTFSection = [ var ] FormalType { "," FormalType }. 
FormalType = { array "*" of } ( TypeName | InterfaceType ). 
InterfaceType = object [ PostulatedInterface ]. 
PostulatedInterface =  "{" DefinitionName { "," DefinitionName } "}". 
ObjectType = object ObjectDefinition ident. 
RecordType = record { VariableDeclaration ";" } end ident. 
ProtocolType = activity [ "{" ProtocolName "}" ]. 
 
// 8. Procedures & operators 
ProcedureDeclaration = ProcedureHeading [ ProcImplementationClause ] ";" [ ProcedureBody ";" ]. 
ProcImplementationClause = implements ImplementedMemberName { "," 
ImplementedMemberName }. 
ImplementedMemberName = ( DefinitionName | "[" "]" ) "." MemberName. 
ProcedureHeading = procedure [ Modifiers ] ProcedureName [ FormalParameters ]. 
ProcedureBody = Declarations UnitBody SimpleName. 
FormalParameters = "(" [ FPSection { ";" FPSection } ] ")" [ ":" FormalType ]. 
FPSection = [ var ] ident { "," ident } ":" FormalType. 
OperatorDeclaration = operator [ Modifiers ] OpSymbol [ FormalParameters ] ";" OperatorBody ";". 
OperatorBody = Declarations UnitBody OpSymbol. 
OpSymbol = string.   // A 1,2,3-character string; the set of possible symbols is restricted 
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// 9. Statements 
StatementSequence = Statement { ";" Statement }. 
Statement = [ Assignment 
    | ProcedureCall 
    | IfStatement 
    | CaseStatement 
    | WhileStatement 
    | RepeatStatement 
    | LoopStatement 
    | ForStatement 
    | await Expression 
    | exit 
    | return [ Expression { "," Expression } ] 
    | BlockStatement 
    | Send 
    | Receive 
    | SendReceive 
    | LaunchActivity 
    | AnonymousActivity 
    ]. 
Assignment = Designator { "," Designator } ":=" Expression { "," Expression }. 
ProcedureCall = Designator. 
IfStatement = if Expression then StatementSequence 
     { elsif Expression then StatementSequence } 
     [ else  StatementSequence ] 
     end. 
CaseStatement =  case Expression of 
         Case { "|" Case } 
     [ else StatementSequence ] 
       end. 
Case = [ CaseLabel { "," CaseLabel } ":" StatementSequence ]. 
CaseLabel = ConstExpression [ ".." ConstExpression ]. 
WhileStatement = while Expression do StatementSequence end. 
RepeatStatement = repeat StatementSequence until Expression. 
LoopStatement = loop StatementSequence end. 
ForStatement = for ident ":=" Expression to Expression [ by ConstExpression ] 
     do StatementSequence end. 
BlockStatement = do [ Modifiers ] 
         [ StatementSequence ] 
         { ExceptionHandler } 
         [ CommonExceptionHandler ] 
         [ TerminationHandler ] 
      end. 
ExceptionHandler = on ExceptionName { "," ExceptionName } do StatementSequence. 
CommonExceptionHandler = on exception do StatementSequence. 
TerminationHandler = on termination do StatementSequence. 
Send = ActivityInstanceName [ "(" Designator { "," Designator } ")" ]. 
Receive = [ Designator { "," Designator } ":=" ] await [ ActivityInstanceName ]. 
SendReceive = Designator { "," Designator } ":=" Send. 

Accept = accept QualIdent {"," QualIdent}. 
LaunchActivity = new ActivityName [ "(" ActualParameters ")" ]. 
AnonymousActivity = activity ";" Declarations UnitBody. 
 
// 10. Expressions 
Expression = SimpleExpression 
       [ ( "=" | "#" | "<" | "<=" | ">" | ">=" | in ) SimpleExpression ] 
    |  Designator implements DefinitionName 
    |  Designator is TypeName. 
SimpleExpression = [ "+"|"-" ] Term { ( "+" | "" | or ) Term }. 
Term = Factor { ( "*" | "/" | div | mod | "&"  
    | "+*" | ".*" | "./" | "\" ) Factor }. 
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Factor = number 
   | CharConstant 
   | string 
   | nil 
   | Set 
   | Designator 
   | new TypeName [ "(" ActualParameters ")" ] 
   | new ActivityName [ "(" ActualParameters ")" ] 
   | "(" Expression ")" 
   | "~" Factor 
   | "!" Factor 
   | Factor “**” Factor. 
Set = "{" [ SetElement { "," SetElement } ] "}". 
SetElement = Expression [ ".." Expression ]. 
ExpressionArray = "[" ArrayFactor "]". 
ArrayFactor = ExpressionArray { "," ExpressionArray }  
        | Expression { "," Expression }. 
ExpressionRange = Expression | Range. 
Range = [Expressions ] ".." [Expression ] [ "by" Expression ] . 
Designator = Instance 
     | TypeName "(" Expression [ "," Size ] ")"   // Conversion 
     | Designator "^"        // Dereference 
     | Designator "[" ExpressionRange { "," ExpressionRange } "]" // Array element(s) 
     | Designator "(" [ ActualParameters ] ")"   // Function call 
     | Designator "." MemberName    // Member selector  
Instance = ( self | InstanceName | DefinitionName "(" InstanceName ")" ). 
Size = ConstantExpression. 
ActualParameters = Actual { "," Actual }. 
Actual = Expression [ "{" [ var ] FormalType "}" ].  // Argument with type signature 
 
// 11. Constants 
number = (whole | real) [ "{" Width "}" ]. 
whole = digit {digit} | digit {hexDigit} "H". 
real = digit { digit } "." { digit } [ ScaleFactor ]. 
ScaleFactor = "E" ["+" | "" ] digit { digit }. 
HexDigit = digit | "A" | "B" | "C" | "D" | "E" | "F". 
digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9". 
CharConstant = '"' character '"' | "'" character "'" | digit { HexDigit } "X". 
string = '"' { character } '"' | "'" { character } "'". 
character = // Any character from the alphabet except the current delimiter character 
 
// 12. Identifiers & names 
ident = ( letter | "_" ) { letter | digit | "_" }. 
letter = "A" | ... | "Z" | "a" | ... | "z" | // any other "culturally-defined" letter 
IdentList = ident { "," ident }. 
QualIdent = { ident "." } ident. 
DefinitionName = QualIdent. 
ModuleName = QualIdent. 
NamespaceName = QualIdent. 
ImplementationName = QualIdent. 
ObjectName = QualIdent. 
TypeName = QualIdent. 
ExceptionName = QualIdent. 
InstanceName = QualIdent. 
ActivityInstanceName = QualIdent. 
ProcedureName = ident. 
ProtocolName = ident. 
ActivityName = ident. 
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MemberName = ( ident | OpSymbol ). 
SimpleName = ident. 
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