
Genie										Active	Oberon									Enumeration	Types	 	 1	

Extending	Active	Oberon	with	Enumeration	Types	
B.	Kirk	11th	April	2014	

1	 Introduction	and	Motivation	 1	

2	 Enumeration	Types	 2	

3	 Built	in	language	facilities	 4	

4	 Implementation	Specifics	 4	

5	 Active	Oberon	Syntax	in	EBNF	with	Enumeration	Types	 5	

6	 References	 7	

7	 This	Document’s	Change	Log	 7	

1 Introduction	and	Motivation	
Active	Oberon	(AO)	is	a	language	which	is	part	of	the	evolution	of	a	family	of	languages:	PASCAL,	
Modula-2,	Oberon	and	Active	Oberon:	other	 languages	such	as	Ada	are	also	descended	 from	
PASCAL	[1].	All	are	so	called	‘strongly	typed’	languages	and	place	an	emphasis	on	programming	
in	 a	 style	 that	 enables	 the	 compiler	 to	make	 extensive	 checks	 to	 ensure	 that	 operations	 are	
applied	to	data	 in	a	consistent	and	appropriate	way.	 	What	should	be	allowed	is	allowed	and	
what	shouldn’t	be	allowed	is	detected	at	compile	time	and	is	forbidden.	
	
Strongly	typed	languages	tend	to	be	used	in	application	domains	involving	safety	such	as	security,	
automation,	 transport	 and	 medical	 applications	 where	 testability	 during	 development	 and	
dependability	during	operation	are	of	prime	importance.	
	
The	 evolutionary	 step	 from	Modula-2	 to	Oberon	 [2]	was	motivated	 by	 the	 need	 to	 program	
‘object	oriented’	solutions	to	problems	and	also	a	quest	for	language	simplification,	achieved	by	
removing	 current	 language	 features	 deemed	 unnecessary	 for	 the	 projects	 envisioned	 by	
Oberon’s	 designers.	 This	was	 implemented	 in	 Oberon	 and	 Active	 Oberon	 by	 the	 addition	 of	
extensible	types	[2,	4]	and	the	removal	of	many	features	including	enumeration	types	[3,	5].	
	
The	 elimination	 of	 enumeration	 types	 rendered	 Oberon	 and	 Active	 Oberon	 incapable	 of	
providing	compiler	checks	involving	“scalar	types	[1]”,	i.e.	groups	of	values,	which	are	logically	
bound	together,	such	as	the	state	names/values	of	a	state	machine	or	colours	of	the	rainbow	etc.	
In	this	instance	the	compiler	checkable	program	type	safety	was	sacrificed	in	favour	of	simplicity	
of	 compiler	 implementation	 [3,	 8].	 See	 [10]	 for	 an	 alternative	 view	 providing	 a	 rationale	 for	
programming	without	enumerations	in	Oberon.		
	
This	 document	 proposes	 an	 extension	 (addition)	 to	 the	 Active	 Oberon	 language	 to	 make	
representation	of	enumeration	types	possible	in	programs.	For	completeness	it	also	proposes	a	
means	to	make	enumeration	types	extensible	based	on	the	scheme	used	in	Modula-2	R10	[8].	 	

Genie										Active	Oberon									Enumeration	Types	 	 2	

2 Enumeration	Types	
The	use	of	enumeration	types	provides	type	safety	by	ensuring	that	invalid	values	cannot	be	used	
for	any	variable	or	parameter	of	an	enumeration	type	involving	operations	on	variables	of	that	type.	In	a	
language	without	 enumeration	 types,	 or	 with	 “quasi”	 enumeration	 types	 (e.g.	 C)	 programmers	must	
manually	 check	 that	 values	 are	 not	 out	 of	 range,	 but	 for	 large	 programs	 this	 becomes	 practically	
impossible,	even	for	small	programs	it	is	difficult.	For	example	the	source	of	the	Oberon	System	is	littered	
with	groups	of	CONST	declarations	which	provide	a	type	less	and	error	prone	substitute	for	enumeration	
types.	 For	 modern	 high	 integrity	 industrial	 and	 commercial	 programming	 this	 is	 certainly	 not	 good	
programming	practice.	
	
Two	main	objections	have	been	levelled	against	enumeration	types	[10]:	

1. Potential	ambiguity	of	naming	when	importing	an	enumeration	type	from	another	module	
2. Lack	of	type	extensibility	

An	enumeration	type	is	an	ordinal	type,	it’s	valid	values	are	defined	by	a	list	of	identifiers.	To	provide	a	
simple	 solution	 to	 the	potential	 ambiguity	problem	all	 enumerated	values	are	qualified	with	 the	 type	
identifier.	 The	 identifiers	 are	 assigned	 ordinal	 values	 from	 left	 to	 right	 as	 they	 appear	 in	 the	 type	
definition.	 The	 ordinal	 value	 assigned	 to	 the	 leftmost	 identifier	 is	 always	 0,	 the	maximum	number	 of	
identifiers	in	an	enumeration	is	implementation	dependent.	

	Suppose	that	this	TYPE	is	declared	in	the	exporting	module	

 MODULE Graphics;
 TYPE Monochrome* = (black, white); (* ORD(black) has the value 0*)

 After	importing	the	type	to	this	module	the	variable	can	be	declared,	and	then	used	

 MODULE Application;

 IMPORT Graphics;

 VAR pixel : Monochrome;

 BEGIN
 pixel := Monochrome.white; (* qualified *)

When	an	enumeration	type	is	imported	from	another	module,	then	all	the	identifier	names	defined	its	
original	 declaration	 are	 implicitly	 imported	 as	 well.	 The	 type’s	 group	 of	 identifiers	 can	 be	 used	
unambiguously	in	the	importing	module	due	to	their	qualification	when	used,	i.e.	prefixing	each	imported	
identifier	name	with	the	name	of	the	type	that	has	been	imported.	

Genie										Active	Oberon									Enumeration	Types	 	 3	

To	provide	extensibility	of	type	declarations	the	scheme	proposed	in	the	specification	of	Modula-2	R10	
[8]	 is	 used.	 An	 enumeration	 type	may	 be	 defined	 as	 an	 extension	 of	 an	 existing	 type	 declaration	 by	
including	within	it	the	identifier	of	the	base	type	as	the	first	item	in	the	enumerated	value	list	suffixed	by	
the	“$”	symbol.	All	enumerated	values	of	the	base	type	become	legal	values	of	the	new	type.	But	note	
that	the	base	type	is	only	downwards	compatible	with	any	extended	types	derived	from	it,	extensions	are	
not	upwards	compatible	with	their	base	type.	This	restriction	exists	because	any	value	of	the	base	type	is	
always	a	legal	value	of	any	extension	type	derived	from	it,	however	not	every	value	of	an	extension	type	
is	also	a	valid	value	of	the	base	type.		

For	example:	

 TYPE Monochrome* = (black, white);
 TYPE ColourRGB = (Monochrome$, red, blue, green)
 TYPE ColourCYM = (Monochrome$, cyan, yellow, magenta)

 VAR a:Monochrome; b,d:ColourRGB, c,e:ColourCYM;

 BEGIN

 a:= white;
 b:= blue;
 c:= yellow;

 b:= a (*valid - value of b is now white *);
 c:= a (*valid - value of c is now white *);
 d:= b (*valid - value of d is now blue *);
 e:= c (*valid - value of e is now yellow *);

 a:= b (*invalid*)
 a:= c (*invalid*)
 b:= c (*invalid*)
 c:= b (*invalid*)

Genie										Active	Oberon									Enumeration	Types	 	 4	

3 Built	in	language	facilities	
Some	built	language	facilities	are	needed	for	clear	and	clean	programming,	typically

ORD returns	the	integer	value	representing	an	identifier
PRED returns	the	previous	identifier	in	the	enumerated	sequence
SUCC returns	the	succeeding	identifier	in	the	enumerated	sequence
FIRST returns	the	value	of	the	first	identifier	in	the	enumerated	sequence
LAST returns	the	value	of	the	last	identifier	in	the	enumerated	sequence

4 Implementation	Specifics	
The	following	are	implementation	specific:	
	

1. The	 value	 range	 supported	 for	 enumerations,	 i.e.	 max	 number	 of	 identifiers	 in	 an	
enumeration	declaration.	It	is	suggested	that	a	ORD	would	return	a	16	or	32	bit	integer	
value	depending	on	consistency	with	the	current	compiler	implementation	conventions.	
In	practice	using	only	an	8	bit	integer	may	be	too	limiting.	

2. Any	jump	tables,	e.g.	used	for	CASE	statement	lookups,	could	be	sized	base	on	the	actual	
subrange	of	values	in	each	specific	declaration	of	an	enumeration.	

3. The	 behavior	 of	 PRED	 and	 SUCC	 for	 values	 going	 out	 of	 range	 needs	 to	 be	 defined	
e.g.	wrap	around	OR		runtime	error	trap	OR	limit,	return	the	given	value	unchanged	

4. The	behavior	for	an	attempted	assignment	out	of	range	at	runtime	needs	to	be	defined	
	
This	list	is	most	probably	incomplete,	please	add	more	items	as	they	become	apparent.	

Genie										Active	Oberon									Enumeration	Types	 	 5	

5 Active	Oberon	Syntax	in	EBNF	with	Enumeration	Types	
The	syntax	of	Active	Oberon	given	here	is	based	on	the	documentation	of	the	the	Eigen	Compiler	
Suite	[6],	with	the	permission	of	F	Negele.	The	changes	to	the	syntax	to	support	enumeration	
types	are	added	in	italics.	

This syntax needs to be reviewed by F Negele please!!

(* Active Oberon Syntax copied from [9] with Enumerated Types *)

Module = "MODULE" Identifier ["IN" Identifier] ";" [Imports]
 {DeclSeq} Body Identifier ".".
Imports = "IMPORT" Import {"," Import} ";".
Import = Identifier [":=" Identifier] ["IN" Identifier].
 DeclSeq = "CONST" {ConstDecl ";"}
 | "TYPE" {TypeDecl ";"}
 | "VAR" {VarDecl ";"} | ProcDecl ";".
ConstDecl = Identifier ["*"] "=" ConstExpr.
TypeDecl = Identifier ["*"] "=" Type.
VarDecl = IdentList ":" Type.
ProcDecl = "PROCEDURE" ["{" "NORETURN" "}"] Signature ";"
 [{DeclSeq} Body Identifier].
Signature = ["&" | "~"] IdentDef [FormalPars].
FormalPars = "(" [FPSection {";" FPSection}] ")" [":" Type].
FPSection = ["VAR" | "CONST"] Identifier {"," Identifier} ":" Type.
Type = Qualident
 | "BOOLEAN" | "CHAR" | "SET" | "REAL" | "LONGREAL"
 | "SHORTINT" | "INTEGER" | "LONGINT" | "HUGEINT"
 | "ADDRESS" | "SIZE" | "WORD" | "LONGWORD"
 | "ARRAY" [ConstExpr {"," ConstExpr}] "OF" Type
 | "RECORD" [BaseType] [FieldList] "END"
 | "POINTER" ["{" "UNSAFE" "}"] "TO" Type
 | "OBJECT" [[BaseType] {DeclSeq} Body]
 | "PROCEDURE" ["{" "NORETURN" "}"] [FormalPars]
 | "TYPE" "OF" Expr

(*Enumeration support – declare the type*)
 | “ENUM” EnumDecl.
EnumDecl = IdentDef “=” “(“ [QualIdent “$”] “,” IdentList “)”.

BaseType = "(" Qualident ")".
FieldDecl = [IdentList ":" Type].
FieldList = FieldDecl {";" FieldDecl}.
Body = StatBlock | "END".
StatBlock = "BEGIN" ["{"IdentList"}"] [StatSeq] "END".
StatSeq = Statement {";" Statement}.
Statement = [Designator ":=" Expr
 | Designator ["(" ExprList")"]
 | "IF" Expr "THEN" StatSeq {"ELSIF" Expr "THEN" StatSeq}
 ["ELSE" StatSeq] "END"
 | "CASE" Expr "DO" Case {"|" Case}
 ["ELSE" StatSeq] "END"
 | "WHILE" Expr "DO" StatSeq "END"
 | "REPEAT" StatSeq "UNTIL" Expr
 | "FOR" Identifier ":=" Expr "TO" Expr
 ["BY" ConstExpr] "DO" StatSeq "END"

Genie										Active	Oberon									Enumeration	Types	 	 6	

 | "LOOP" StatSeq "END"
 | "WITH" Qualident ":" Qualident "DO" StatSeq "END"
 | "EXIT"
 | "RETURN" [Expr]
 | "WAIT" "(" Expr ")"
 | "AWAIT" "(" Expr ")"

(* Implementation defined behavior *)

 | "ASSERT" "(" Expr ["," ConstExpr] ")"
 | "HALT" "(" [ConstExpr] ")"
 | "NEW" "(" ExprList ")"
 | "DISPOSE" "(" Expr ")"
 | "INC" "(" Expr ["," Expr] ")"
 | "DEC" "(" Expr ["," Expr] ")"
 | "INCL" "(" Expr "," Expr ")"
 | "EXCL" "(" Expr "," Expr ")"
 | "COPY" "(" Expr "," Expr ")"
 | "GETPROCEDURE" "(" Expr "," Expr "," Expr ")"
 | "TRACE" "(" ExprList ")"
 | StatBlock].
Case = [CaseLabels { "," CaseLabels } ":" StatSeq].
CaseLabels = ConstExpr [".." ConstExpr].
ConstExpr = Expr.
Expr = SimpleExpr [Relation SimpleExpr].
SimpleExpr = ["+" | "-"] Term {AddOp Term}.
Term = Factor {MulOp Factor}.
Factor = Designator ["(" ExprList ")"] | "NIL"
 | Character | Number | String | Set
 | "(" Expr ")" | ["[" ExprList "]"] | "~" Factor
 | "CAP" "(" Expr ")" | "LOW" "(" Expr ")"
 | "ORD" "(" Expr ")" | "CHR" "(" Expr ")"
 | "ABS" "(" Expr ")" | "ENTIER" "(" Expr ")"
 | "LONG" "(" Expr ")" | "SHORT" "(" Expr ")"
 | "MIN" "(" Type ")" | "MAX" "(" Type ")"
 | "SIZE" "OF" Type | "ADDRESS" "OF" Designator
 | "ODD" "(" Expr ")" | "ASH" "(" Expr "," Expr ")"
 | "LEN" "(" Expr ["," Expr] ")"
 | "CAS" "(" Expr "," Expr "," Expr ")"

(* Enumeration support – ORD is already defined above*)
 | "SUCC" "(" Expr ")" | "PRED" "(" Expr ")"
 | "FIRST" "(" Expr ")" | "LAST" "(" Expr ")".

Set = "{" [Element {"," Element}] "}".
Element = Expr [".." Expr].
Relation = "=" | "#" | "<" | "<=" | ">" | ">=" | "IN" | "IS".
MulOp = "*" | "DIV" | "MOD" | "/" | "&".
AddOp = "+" | "-" | "OR".
Designator = Qualident { "." Identifier
 | "[" ExprList "]"
 | "^"
 | "(" Qualident ")" }.
ExprList = Expr {"," Expr}.
IdentList = IdentDef {"," IdentDef}.
Qualident = [Identifier "."] Identifier.
IdentDef = Identifier ["*" | "-"] ["{" "UNTRACED" "}"]
[":=" ConstExpr | "EXTERN" String].

(* end of syntax *)

Genie										Active	Oberon									Enumeration	Types	 	 7	

6 References	
[1] The		Programming	Language	Pascal,	1972	,	(see	section	6.1.1,	scalar	types)	

http://www.eah-jena.de/~kleine/history/languages/Wirth-PascalRevisedReport.pdf	
[2] Type	Extensions,	N.	Wirth,	ACM	Trans	on	Programming	Languages	and	Systems,	10:2,	204-214,	Apr.	1988	

http://www.ethoberon.ethz.ch/books.html#Wir88c	
[3] From	Modula	to	Oberon,	N.	Wirth,	Software	-	Practice	and	Experience,	18:7,	661-670,	Jul.	1988	

http://www.ethoberon.ethz.ch/books.html#Wir88a	
[4] 	Extensibility	in	the	Oberon	System,	Hans-Peter	Mossenbock	

https://www.cs.helsinki.fi/njc/njc1_papers/number1/inv_paper4.pdf	
[5] The	Oakwood	Guidelines	for	Oberon-2	Compiler	Developers,	B	Kirk	(ed)	

http://www.math.bas.bg/bantchev/place/oberon/oakwood-guidelines.pdf	
[6] Combining	Lock-Free	Programming	with	Cooperative	Multitasking	for	a	Portable	Multiprocessor	Runtime	

System,	ETH	Dissertation	22298	(PhD),	Florian	Negele,		2015	
[7] Another	view	of	Einstein’s	dictum:

"Everything	should	be	made	as	simple	as	possible,	but	not	any	simpler."	
http://knightsoftype.blogspot.co.uk/2013/12/einsteinian-simplicity-in-context-of.html	

[8] Modula-2	Reloaded,	see	the	Language	Report	at	:		
http://modula-2.info/m2r10/	

[9] User	Manual	for	Active	Oberon,	9th	December	2014,	F	Negele,	Eigen	Compiler	Suite	
[10] Programming	Without	Enumerations	in	Oberon	

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.97.7983&rep=rep1&type=pdf	

7 This	Document’s	Change	Log	
If	you	make	changes	to	this	document	please	add	a	change	record	at	the	top	of	the	list.	

(*@ Change Log for: Extending Active Oberon with Enumeration Types

 # Date (ymd) By Description

001 2016-04-11 BK First draft 17:38
*)

<end	of	document>	
	
	
160411	1145	:	BK	wish	list	for	future		
BYTE	as	in	‘Oberon	Station’	Oberon	
SHORTSET	(8bit),	SET916	bit?),	LONGSET	(32	bit?),	HUGESET	(64	bit	set)	or	SET8,	SET16,	SET32,	SET64	
CASE	used	for	discriminator	of	extended	RECORD	variants	as	in	‘Oberon	Station’	Oberon	

